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“Differential calculus on the Faber polynomials” by Airault and Bouali presents, on p. 186 and
209 (eqns. 1.34 and 6.3), the inverse pair of formal Laurent series

and

with, for ,

with .

A & B reference avatars of these relations in  "Identities in the theory of power series" by Schur
and in the paper “An algebra of differential operators and generating functions on the set of

univalent functions” by Airault and Ren. Proofs that can be found in both Schur
(see eqns. 50, 51, and 57') and A & R---with A & R embedding the more transparent arguments
in the text from pages 350-2 with the key ideas centered around equations 1.2.7 and 1.2.8 with

in 1.2.8. Schur defined the general self-convolution expansion coefficients , with
an integer and a natural number, for a formal ordinary generating function (o.g.f., or

power series) via



Also note

with

(The Laurent series has the form used in some definitions of Faber polynomials, a phrase I’ii
reserve for the related but distinct Faber partition polynomials.)

There are a multitude of identities, differential and otherwise, for these Schur Konvolution
Koefficients (a play on K as a mnemonic and the for its roles as the Power of the defining
function and the superscript of ), which have been presented by Lagrange, Schur, Airault,
Bouali, Ren, and others. (See a later section on related general identities presented by Stanley.)
Many of the identities are connected to the classical Faber partition polynomials of the
Newton-Girard-Waring identities in symmetric function theory (I’ll show some of these in two
later pdfs). Below I provide some new characterizations of subsets of these Schur coefficients
related chiefly to compositional inversion and associated combinatorics.

In addition to characterizing the special involutive subset of Schur self-convolution expansion

coefficients ,  I'll show how is related to the signed refined face partition
polynomials of the associahedra (OEIS A133437, see section B of the answer to the
MathOverflow Question “Why is there a connection between enumerative geometry and
nonlinear waves?” or my top answer to the MQ-Q  “Important formulas in combinatorics” ) and

how is related to the noncrossing partition polynomials of A134264. Then I’ll derive

identities among these subsets and , the reciprocal polynomials giving the coefficients of
the o.g.f. of the reciprocal of an ordinary generating function (see the appendix titled “The
reciprocal polynomials”.. A & B give on p. 185 (eqn. 1.33)

,

but apparently the authors of the papers cited above weren't aware of the links to associahedra
nor noncrossing partitions and related combinatorial constructs.

https://oeis.org/A133437
https://mathoverflow.net/questions/145555/why-is-there-a-connection-between-enumerative-geometry-and-nonlinear-waves
https://mathoverflow.net/questions/145555/why-is-there-a-connection-between-enumerative-geometry-and-nonlinear-waves
https://mathoverflow.net/questions/214927/important-formulas-in-combinatorics/215203#215203
https://oeis.org/A134264


Some sections of this pdf include broader identities for the general Schur expansion coefficients
, and two forthcoming sets of notes will address more of such via connections with the

Faber partition polynomials, leading in particular to a recursion formula for given for
that is also noted below and an umbral recursion formula for given the lower

order and associated Faber polynomials.

___________________________________________

The special Schur self-convolution expansion polynomials

First, let’s slightly extend the analysis above by introducing the two additional indeterminates
and for the linear terms so that

and

.

{See Appendix (?): Introducing a general linear coefficient for details of this extension of the
analysis. For the most part, in these notes.)

The following is a list of the first few partition polynomials for in terms of with empirical

observations (later proved) on associated combinatorics. Note that the monomials are not
found in any of the bracketed polynomials after so that the number of monomial summands
is given by A000041 minus one. The remaining partitions are given in the order of those on p.
832 of "Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables"
edited by Abramowitz and Stegun.

The first few special Schur self-convolution expansion polynomials are

___________________________________________
___________________________________________

___________________________________________
___________________________________________

___________________________________________

https://oeis.org/A000041


___________________________________________

___________________________________________
___________________________________________

(1,1): coefficients; sum = 2, third Catalan number (A000108)

(1,1): Narayana numbers, second row of A001263, h-vectors of the associahedra; Dyck path /
ordered trees numbers, second row of A091869 and A091187.
___________________________________________
___________________________________________

(1,1,2,1): coefficients: sum = 5, fourth Catalan

(1,1+2=3,1) = (1,3,1): Narayanas--third row from summing the coefficients over the monomial

summands with the same order of in increasing order, i.e., the coefficients of the
polynomial

.

(1,2,1+1) = (1,2,2): summing coefficients over the monomial summands with the same order

of in decreasing order , i.e., the coefficients of

;

Dyck paths / ordered trees, third row of A091869, reversed A091187.
___________________________________________
___________________________________________

(1,3,3,3,3,1), coefficients; sum = 14, fifth Catalan

(1,6,6,1), Narayanas--fourth row

(1, 3, 3+3, 3+1) = (1,3,6,4):

https://oeis.org/A000108
https://oeis.org/A001263
https://oeis.org/A091869
https://oeis.org/A091187


;

Dyck paths / ordered trees, fourth row of A091869, reversed A091187.
___________________________________________
___________________________________________

(1,6,4,2,12,6,2,4,4,1): coefficients; sum = 42, sixth Catalan

(1,10,20,10,1) Narayanas, fifth row

(1,4,6+6,12+4,2+2+4+1) = (1,4,12,16,9);

Dyck paths / ordered trees, fifth row of A091187 and reversed A091869.
___________________________________________
___________________________________________

(1,10,5,10,30,10,10,10,20,10,5,5,5,1): coefficients, sum = 132, seventh Catalan

(1, 15, 50, 50, 15, 1): Narayanas--sixth row

(1,5,20,40,45,21): Dyck paths / ordered trees, fifth row of A091187 and reversed A091869.

___________________________________________
___________________________________________

Let’s now prove what the numerical evidence above suggests; the partition polynomials for
Schur’s self-convolution coefficients are intimately related to the partition polynomials reflecting
the combinatorics of the associahedra and the noncrossing partitions (and their numerous
associated combinatorial constructs, such as trees, lattice paths, and quivers).



___________________________________________

Compositional and multiplicative inversions, Laurent series, and the noncrossing
partitions and special Schur expansion coefficients

Following the analysis in my notes and MO-Q on the Schwarz-Kac ops and Alexandrov's paper
(p. 21) and identifying below with above, the inverse of the Laurent series

is

,

where the are the partition polynomials of OEIS A134264, the inversion polynomials

giving the coefficients of the formal o.g.f. that is the compositional inverse of a formal

o.g.f. in terms of the coefficients of its shifted reciprocal

. This inverse agrees with that of A & B with and
. Note from the comments, links, and refs in the OEIS that the have

numerous combinatorial interpretations, including labeling and enumerating noncrossing
partitions (NCP).

Now form

https://oeis.org/A134264


where, from the inversion interpretation of the partition polynomials of A134264,

and

Then

and

___________________________________________

The Schur expansion coefficients, the associahedra and noncrossing partition
polynomials and compositional and multiplicative inversions

Let's relate the analysis to the Schur self-Konvolution expansion coefficients defined as in

by

Define the reciprocals



Then

identifying

The signed refined face partition polynomials, or refined Euler characteristic polynomials, of the

associahedra, , presented in A133437 give the coefficients of the o.g.f.

, the formal compositional inverse about the origin of the formal o.g.f.

, and the noncrossing partition polynomials of A134264,

, give the same comp. Inverse, as indicated above, but in terms of the

coefficients of the o.g.f. that is the shifted reciprocal of ,  i.e.,

.

Then the classic Lagrange inversion theorem/formula (LIF) implies

and, conversely,

https://oeis.org/A133437
https://oeis.org/A134264
https://en.wikipedia.org/wiki/Lagrange_inversion_theorem


FInally, we have from Schur, as noted above, that

Note for computational purposes that

where the last sum has a finite number of terms, ensuring the analysis is graded and, therefore,
applies to formal o.g.f.s as well as convergent ones.

___________________________________________

Identities among the reciprocal, associahedra, noncrossing, and the special
Schur self-convolution expansion partition polynomials

Reprising, the o.g.f.s in the formulas for computing the Schur coefficients are

,

,

.

The coefficients of the o.g.f. are determined in terms of the by the signed reciprocal
partition polynomials of A263633 (see the appendix below titled ‘The reciprocal

polynomials”.. Then its inverse o.g.f. can be determined either with associahedra

polynomials of A133437 with the indeterminates or

https://oeis.org/A263633


with the noncrossing partition polynomials of A134264 with the
indeterminates . This is a verbalization of the identity

,

and we can identify

which I’ll express more concisely as the substitution/composition identity

for the three sets of partition polynomials.

In addition, the coefficients of the inverse o.g.f. are determined by the

or by ; that is,

and we can identify

and conclude

,

consistent with , the identity transformation under substitution.

Consequently,



where the reciprocal polynomials for o.g.f.s (A263633 mod signs) are determined by

We can distill from these identities that

Because the reciprocal is an involution and

,

then

or



Repeating, once again, arguments above, since

then

and

.

Since also from above,

and the reciprocal polynomials form an involutive set,

.

More concisely, we have the conjugation

___________________________________________

Reprising and iterating the basic Identities among the reciprocal, associahedra,
noncrossing, and the special Schur self-convolution expansion partition
polynomials

Reprising for brevity,

,



,

,

,

,

.

Combining the identities,

and, consistently,

.

We can identify the conjugation, or ’similarity’, transformation

,

an isomorphism between an involutive Lagrange inversion set of partition polynomials
for compositional inverse pairs of o.g.f.s and an involutive Lagrange inversion set of partition

polynomials for compositional inverse pairs of particular Laurent series.

Note that the five pairs of partition polynomials

and , and , and , and , or and

are sufficient to generate the remaining two sets, The pair and is not sufficient to

do--they can generate even-order self-compositions of . is the only
non-involutive set. (For completeness, examples of partition polynomials generated by

are in one of the last sections of this pdf.)

We also have the miscellaneous relations, derived from the above,

,

,



,

,

.

My MathOverflow question “Combinatorics of iterated composition of noncrossing partition
polynomials” and blog post “Matryoshka Dolls: Iterated noncrossing partitions, the refined

Narayana group, and quantum fields” presents more info on the which I call
the refined Narayana polynomials for any integer, a group with the two generators

and its inverse set of partition polynomials under iterated substitution, or
composition. The blog post also presents the parallel e.g.f. / Taylor series version--the refined
Eulerian group. (More on these groups in forthcoming pdfs.)

The direct bijections with Shur self-convolution expansion coefficients are

,

,

.

The general Schur self-convolution expansion coefficients encompass the important
partition polynomials characterizing the various avatars of Lagrange inversion of o.g.f.s.--one
array to rule them all.

____________________

A change of variables in the equations giving the inverse of leads to a slight variation in
the arguments above and the same basic identities among the partition polynomials:

so we can use either the to determine the compositional inverse of or the
leading once again to the identities

https://mathoverflow.net/questions/425283/combinatorics-of-iterated-composition-of-noncrossing-partition-polynomials
https://mathoverflow.net/questions/425283/combinatorics-of-iterated-composition-of-noncrossing-partition-polynomials
https://tcjpn.wordpress.com/2022/07/08/iterated-noncrossing-partitions-and-quantum-fields/
https://tcjpn.wordpress.com/2022/07/08/iterated-noncrossing-partitions-and-quantum-fields/


and

confirming

and leading, via , to the variation

.

_________________
_________________

Spot-checks:

For easy reference, with and an obvious abbreviation of notation, the first few partition
polynomials of the special set of Schur expansion polynomials are

,

,

,

,

,

the first few refined associahedra Euler characteristic polynomials are

,

,



,

,

and

,

,

.

First check:

,

and

Second check:

and

, so

.

Third order check:



and

,

which is the third row of A338135.

Fourth  order check:

,

which is the fourth row of A338135.

Fifth order check:

,

which is the fifth row of A338135.

_________________
_________________

More illustrations and checks:

https://oeis.org/A338135


in which the coefficient of is .

in which the coefficient of is .

The first few associahedra polynomials of A133437 with a shift in indices and
are

,

,

,

so



and

_________________
_________________

The set of Schur coefficients have an interpretation as the coefficients of the o.g.f. of the

inverse of about the origin in terms of the coefficients of the shifted reciprocal

since, by the Lagrange inversion formula,

Checks:

.

The coefficient of the third order term is



,

the fourth order coefficient of the o.g.f. for per A134264.

The coefficient of the fourth order term  is

per A134264, the coefficient of the fifth order term of .

_________________
_________________

_____________________________________

Reductions, or specializations, of the special Schur self-convolution expansion
coefficients

________________

Reduction to the Catalan numbers (A000108):

The following analysis reveals that the sums of the coefficients of the partition polynomials
are the celebrated Catalan numbers.



An o.g.f. for the Catalans is

with inverse

Let

Then

and

Consequently, the general formulas give

.

.



.

This establishes that .

________________

Reduction to the Narayana polynomials (A001263)

The associahedra partition polynomials are a refinement of  the Narayana
polynomials, and the following analysis will show that the partition polynomials

are another refinement of the Narayana polynomials.

From A001263, a shifted o.g.f. in for the Narayana polynomials in is

with the inverse about

For a specialization of our general formulas, let

.

Then

,

,



,

,    (expansion about ),

and

This establishes that summing coefficients of the monomials in the numerators of the inversion

polynomials with like powers for in the monomials generates the
Narayana triangle.



Consistency check:

The plots below, generated with the website Desmos with , provide a more complete,
precise, picture of the inversions for the specialization for the Narayanas.

The curves plotted below in the four graphs are the

purple curve: bisecting diagonal, inverse curves are reflections through this diagonal

black curve: the function , with a singularity at

orange curve:  inverse of the black curve , i.e., its reflection through

red curve:  inverse of about (and an interval near zero)



when gives a real .

green curve: inverse of for in an interval about the origin

when gives a real .









________________

Reduction to the triangle A091869 enumerating Dyck paths and ordered trees

Above we found reductions of the coefficients of the inverse polynomials to the Catalans with

, i.e., with all , and to the Narayanas with

, i.e., with and otherwise . Next consider



For the triangle A091869, an o.g.f. Is

and these seem to be the polynomials of interest from reducing by substitution of
and otherwise.

The shifted reciprocal is

For the second order terms and above, these are the signed polynomials of A091867, whose
inverse is

a composition of the inverse of the shifted Catalans and a simply

invertible Moebius transformation .

A091867 with an extra initial row has the o.g.f.

while its shifted reciprocal is

https://oeis.org/A091869
https://oeis.org/A091867


,

an o.g.f. for the negated coefficients of A091869, which we wish to show are the

, i.e., the sequence

.

Now consider the Schur expansion coefficients.

,

the last polynomial is

,

the third order polynomials of A091869,

while the polynomial of the third power of is

,

the third order polynomial of A091867.

Likewise

with



,

the fourth order polynomial of A091869,

and

,

the fourth order polynomial of A091867.

The highest exhibited coefficients, e.g., , are

,

the polynomials of A091869. The third to the last coefficients, e.g., , are
the expansion coefficients

,

giving, via the Lagrange inversion formula, the coefficients of the compositional inverse of

,  i.e., giving the polynomials of A091867.

Now with our just acquired familiarity with the relevant triangles, let’s repeat the analysis for the
Catalans to prove the alleged reduction/specialization for the special Schur coefficients with

and otherwise .

An o.g.f. for A091867 is

with the inverse in about the origin

Let



Then

and

Consequently, the general formulas give

,

and



.

are the polynomials of A191869 with those of the infinite series just above, and these are
the specialization for . This claim follows from the general formulas as

.

This establishes that for and and .

___________________________________________

Reduction again and mutual recursion formulas

Naturally, these reductions illustrate the following general relationships, a briefer presentation of
the relationships used to prove the reduction results above. From these a recursion relation is
evident.

Given

,



,

which are the coefficients of the o.g.f. for with the obvious definitional convention

,

whereas

,

which are the coefficients of as a power series for .

Consequently, in the series expansion of , we expect to see this relationship
reflected in the polynomials of the and order coefficients of the expansion.

Then also since , the two sets of polynomials and

with the respective o.g.f.s and satisfy the
convolution identity

.

Equivalently,

,

with, again, the convention ,

and

.

The convolution identity can be translated into a mutual pair of recursion relations (compare with
the e.g.f. equivalent A133314): Given one sequence the other can be determined from



or

Equivalently,

from

,

or

Equivalently,

or

______________
______________

Example:



From the last reduction with ,

with .

The inverse of the linear fractional, or Moebius, transformation

is

as is easily determined from the inverse of the matrix , which is .

The inverse of the Catalan sequence o.g.f.

is

Then

with inverse in about the origin



which is an o.g.f. for A091867.

Then

and

Since

,

where is an o.g.f. for A091869 as can be confirmed by solving the quadratic formula in

that entry for . This all agrees with the earlier analysis
for the reduction.



The results could easily be extended to the Fuss-Catalan sequences, whose o.g.f.s

are the inverse of . The Fuss-Catalans have several combinatorial
interpretations and would provide other simple specializations of with potentially useful
interpretations.

Now let's check that the Cauchy convolution identity holds with our example polynomials.

,

,

,

.

Check that the indices are correct for the convolution of the .

.

.

From the convolution identity,

,

,

,



.

A check of the recursion formula:

,

in particular

.

Conversely,

___________________________________________

Example of the involutive property of the special Schur self-Konvolution partition
polynomials

The set of involutive Schur self-Konvolution partition polynomials is one of three examples
presented in my MathOverflow question “Examples of infinite dimensional involutions”.

For example, for the first four grades of involution are,

https://mathoverflow.net/questions/422539/examples-of-infinite-dimensional-involutions


Note that the partition doesn't occur in for .

___________________________________________

Convolutions and umbral calculus:

Convolutions and umbral calculus:

The Schur coefficients can be calculated by an algebraic umbral method described in my post
"The Hirzebruch criterion for the Todd class" and applied to A134264. Switch from an o.g.f.

formulation to an e.g.f. by letting . Then, in umbral notation, e.g., with

, and with ,

and

where indicates that the umbral evaluation is to be made before exponentiation by . This
is also equal to

for which, after expansion in a Taylor series in and reduction of all the polynomials to

monomial summands such as , where is some natural number, the
superscripts in parentheses are ignored and the power dropped to the empty subscript position
marked by the dots, or periods.

As an illustration and check of the computation, consider

https://tcjpn.wordpress.com/2014/12/14/the-hirzebruch-criterion-fo-the-todd-class/


The numerator can be re-expressed to reduce the clutter yet still stress the distinctions among
the umbral variables as

,

where in the last expression the flag, or marker, for an umbral quantity,  i.e., the dot or period, is
omitted.

Then use your preferred symbolic math app to obtain

with 15 terms and the coefficients summing to , the number of ways
three symbols can be permuted with replacement in four linear positions. The coefficient of each

monomial is .

Return to the meaning of the umbral variables and . As constructed, they are not
independent rather in the final unique expansion, so now perform
umbral reduction in the last expansion and accumulation of umbral variables by erasing
subscripts and then dropping/lowering the powers into the subscript positions to obtain



As a quick check note that these are integer partitions of 4, i.e., all the subscripts sum to 4 for
each monomial. The coefficients enumerate the number of ways that 3 symbols can be
permuted in 4 linear positions (e.g., a list, or a word, four letters long) with replacement such
that the number of times a symbol occurs in a list is designated by the subscript. For example,
only 3 distinct words can be formed from the three letters R, S, and T--(R,R,R,R), (S,S,S,S), and
(T,T,T,T)--in which the same symbol occurs 4 times; hence, the term . For the monomial

each word has only two distinct symbols with one symbol occurring once and the other

thrice. Note the monomial does not appear since this would require the initial expansion to
contain a term such as with such that are all distinct
numbers and only three distinct numbers are available.

Converting to the coefficients of the original o.g.f. gives

Finally dividing by gives, correctly,

The expression is a symmetric homogeneous
polynomial in three variables/indeterminates, and the coefficients of the monomials of the
expansion enumerate the various permutations of these three symbols with replacement.

Basic treatises on algebraic combinatorics state that, given distinct objects of size

/cardinality , the coefficient of in the expansion of

counts sequences of objects with a total size over all objects of .

________________________



Other illustrations / spot checks:

Erase subscripts and lower powers, change variables, and then accumulate the monomials:

Change variables ( )  again:

.

Divide by :

.

Remark: the number of distinct monomials in the expansion of is given by

https://oeis.org/A001791 = (0, 1, 4, 15, 56, 210, …) = .

___________________________________________

Multinomial expansion:

First,

.

Then with

,

,

https://oeis.org/A001791


and so on so that with summation symbols

.

________________

Examples:

:

, so we have only one summation symbol

(4 terms, sum of coefficients )

.

___________

For :

, so we have the product of two summation symbols



(15 terms, coefficients sum to )

1) allows only giving .

2) and gives

3) and gives

4) and gives

5) and gives .

Because the polynomial are symmetric under permutations of the symbols, we have only four
unique coefficients and patterns that remain the same if different symbols are associated with

the subscripted ones: , , and

.

Then, from the symmetry, there should be terms of type , i.e., the forms ;
terms of type , i.e., the combinations (without replacement) , ,

, , , ; terms of type , i.e., , , and ;

and combinations (without replacement) of type , i.e., , , and
.

The umbrally reduced monomials are , , , and

.

Then reduction with the umbral power lowering maneuver gives



Converting with , this becomes

Finally, dividing by gives

.

One could think of the computations as successive decreasing levels of refinement or
increasing levels of coarseness in terms of sentences containing words:

The most refined level corresponds to the expansion of

treating the symbols as
noncommutative, generating sentences with four words each and each word
containing only one letter.

Next, the words containing the same letter in a sentence are merged into a single larger word in
a sentence neglecting word order so that each word in a new sentence now contains a letter
distinct from those of the other words and possibly a different number of letters from the other
words in that sentence, that number being the word length. This corresponds to the expansion

of , accumulating like monomials treating each letter/symbol/indeterminate as
commutative. The power of the indeterminate is the length of the corresponding word. Each
monomial is a grammarless sentence, i.e., the word order is insignificant, with a total length in
letters of four. The total sum of the numerical coefficients multiplying these
monomials/sentences is , and the numerical coefficient multiplying a
monomial/grammarless sentence is the multinomial coefficient.

The next level of coarsening is to ignore the letters in a word and count the number of
sentences with the same number of words and word lengths. This corresponds to erasing the
subscript of our indeterminates and dropping, or lowering, the power into the empty subscript
position; e.g. . Consolidating, or accumulating, the reduced symbols gives

a monomial of the form with the sum of the products of subscripts with the corresponding
powers now four for each monomial, i.e., .

Generalizing to any , we have then indeterminates comprising the monomials

of and of the form

.



Each factor in the monomial for which can be associated with a proliferation of

symbols, or letters: to a product of distinct letters, to a product of doubled letters,

to a product of tripled letters, and so on with each multiplet of letters/symbols being

distinct. For example, can be associated with

, which umbrally reduces to ; and can be

associated with , which umbrally reduces to

. In general, the factor can be associated with the symbol form

with all symbols distinct for distinct pairs of natural numbers with
.

The symbol form associated with the monomial is

All these considerations ignore the indeterminates--they can be regarded as
equal to unity and do not enter into calculations of the coefficients of the monomials. Note that

for and that distinct letters are associated with each and,
therefore, or in the associated monomials. This applies only to those whose
exponents are not zero, i.e., those which naturally appear in the monomial for .
Stressing once more, upon umbral evaluation, the symbols associated with a lose their

individuality and are then multiplied together (or coalesce) to give .

From the combinatorics of the expansion of and subsequent
umbral reduction and accumulation of symbol forms, with the relabeling

,

with being the number of non-zero exponents ,

the coefficient of the symbol form is



______________

Check with :

(DIvide by 4 and reverse reorder to obtain 60,90,60,30,20,1 in A & S order. Neither vector is  in
the OEIS.)

The monomial comes from the form

with , so the coefficient is

.

The monomial comes from the form , so the coefficient is

.

The monomial comes from the form , so the coefficient is

.

The monomial comes from the form , so the coefficient is

.

The monomial comes from the form , so the coefficient is

.

The monomial comes from the form , so the coefficient is

.



Check with :

reduces to

.

The monomial comes from the forms , so the coefficient is

.

The monomial comes from the forms , so the coefficient is

.

Check with :

reduces to

.

The monomial comes from the form , so the coefficient is

.

The monomial comes from the forms , so the coefficient is

.

The monomial comes from the forms , so the coefficient is

.

The monomial comes from the form , so the coefficient is

.



For :

from the derivative formula for the Schur self-convolution expansion coefficient,

With , the change of variables and multiplication by leads to the
reduced term

from the expansion of .

The reduced term is from the form , so the
coefficient, as deduced from the multi-factorial expression, is

,

agreeing with the alternative derivative computation above.

With , the change of variables and multiplication by leads to the
reduced term

from the expansion and reduction of .

The reduced term is from the form ,
so the coefficient is

,

which agrees with the alternative derivative calculation.



With , the change of variables and multiplication by leads to the
reduced term

from the reduction of the expanded .

The reduced term is from the form ,
so the coefficient is

,

which agrees with the alternative derivative calculation.

___________________________________________

Multinomial (multi-factorial) coefficients for the monomials of

A direct multinomial formula for the the coefficients of the monomial summands of

follows from the formula above for the coefficients of the symbol forms.

For the monomial

of , we've established that the coefficient of the associated symbol form is

The first exponents, i.e., through , all have the same value ; the next
exponents, the value ; the next , ; and so on. Consequently,

.



In addition, the is ; the is ; and so on.
Consequently,

.

Making the change of variable and dividing by gives

for the coefficient of the monomial

in

(Throughout this set of notes I often have .)

Related analyses in the literature are typically performed with . If ,
the monomial coefficient can be expressed as

.

For standard combinatorial interpretations of the multinomial coefficient, see the Wikipedia post
“The multinomial theorem”.

Examples:

For ,

https://en.wikipedia.org/wiki/Multinomial_theorem


gives , so and

.

gives , so and

.

gives ,  so and

.

gives ,  so and

.

gives ,  so and

.

gives ,   so

.

For ,

.

For ,

, and , so

.



For ,

, so

.

For ,

, and , so

.

___________________________________________
Appendix:

Some more identities for the general Schur expansion coefficients related to
compositional inverse pairs

Equation. 5.140 on p. 147 of “Enumerative Combinatorics Vol. 2” by Stanley (1999) is

which has a critical, presumably typo, error making the RHS independent of .

According to Stanley the result "goes back to J. L. Lagrange, Mem. Acad. Roy. Sci.
Belles-Lettres Berlin 24 (1770); Oeuvres, Vol. 3 Gauthier-Villars, Paris, 1869,
pp. 3-73. It was rediscovered by I. Schur, Amer. J. Math. 69 (1947), 14-26."

And, indeed, the correct version is eqn. 65 on p. 25 of Schur, which is essentially

With , this becomes

Equation 5.53  on p. 38 of Stanley is



(The first equality is corroborated by spot checks using Wolfram Alpha with .)

Equivalently, with , we have the identity

and the LIF can be expressed as

With , this is the classic Lagrange inversion formula

___________________________________________
Appendix:

First few partition polynomials of the set :

For easy reference, the first few are once again

,

,

,

,

,

and the first few refined associahedra Euler characteristic polynomials are

,

,



,

,

so

The last polynomial reduces to , and neither it nor its reverse is in the
OEIS.

___________________________________________
Appendix::

O.g.f.s for reduced arrays for the special involutive Schur self-convolution
expansion polynomials

For the Narayanas,

to order 5 for Narayanas



Another o.g.f. is

.

_____________________________________________

An o.g.f. of A091869 with an extra row, 1,

.

Another o.g.f. is



.

Another o.g.f. is

.

As a Moebius transformation, the Inverse of is easily found to be .
This together with a suitable o.g.f. for the Catalan numbers and its inverse allows the inverse of
the last o.g.f.

The partial array is

1;

1,   1;

2,   2,   1;

4,   6,   3,  1;

9,  16,  12,  4,  1;

21,  45,  40, 20,  5, 1;

51, 126, 135, 80, 30, 6, 1;



__________________________

The o.g.f.  of A091867 is

The inverse in about the origin is

.

For easy reference, the first few rows of the array A091867 are

1,

0, 1,

1, 0, 1,

1, 3, 0, 1,

3, 4, 6, 0, 1,

6, 15, 10, 10, 0, 1,

15, 36, 45, 20, 15, 0, 1,

36, 105, 126, 105, 35, 21, 0, 1

___________________________________________
Appendix:

The reciprocal polynomials



Adding a general constant , gives

.

Summing coefficients of the polynomials in the numerators with like powers of generates the
row polynomials of the Pascal triangle, the triangle of binomial coefficients A007318, since

.

___________________________________________
Appendix:

Introducing a general linear coefficient

Thanks to Schur, we have a self-convolution relating the coefficients of the Laurent series

to the coefficients of the Laurent series

.

https://oeis.org/A007318


For ,

For a general non-vanishing , let

and

Then

and

where

and, for ,

Then

,

and, for ,

,

implying



with

.

The self-convolutions lead to

and ;

and ;

and ; and

and



___________________________________________


