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The Abel-Graves-Lie theory of flow equations and iterated infinitesimal generators, or infingens,
(IIGs) form a common thread weaving through functional iteration (FI) in complex dynamics
(CD) and the vector fields and integral curves of classical and quantum mechanics, in particular
the renormalization group flow (RGF) in statistical and quantum physics (see Zinn-Justin,
Wilson, Barenblatt, Zeidler, and Weinberg). Below are some observations. First the analysis,
and then some history related to certain fairly well-known personages (cameos by Archimedes)
and their less well-known contributions to the subject.

Two fixed-point equations central to FI, or compositional iteration, in CD--Abel's and Schröder's

(see Alexander)--are counterparts to the flow equation for the beta function of the RGF
theory of quantum field theory (QFT)

This defines a flow field, or vector field for integral curves, so prominent in pure and applied
mathematics. This is eqn. (21) on pg. 7, (52) and (56) on pg. 14, and (95) on pg. 20 of
"Wilsonian renormalization, differential equations and Hopf algebras" by Krajewski and
Martinetti (K & M) with the non-autonomous version eqn. (46) on pg. 12 and (108) on pg. 22.
See also comments on pages 111 and 170-1  of  “Renormalization From Lorentz to Landau (and
Beyond)” compiled by Brown.

With the (analytic or formal series) compositional inverse of on a neighborhood

about the point and with

then

https://en.wikipedia.org/wiki/Iterated_function
https://en.wikipedia.org/wiki/Renormalization_group
https://en.wikipedia.org/wiki/Abel_equation
https://en.wikipedia.org/wiki/Schr%C3%B6der%27s_equation
https://en.wikipedia.org/wiki/Beta_function_(physics)
https://arxiv.org/abs/0806.4309


Define a flow function formally via the IIGs as

The equality is to be understood as local for the neighborhood of analyticity and bijectivity about

the point or more generally as an equivalence under analytic
continuation. Here I’ve glossed over the issue of non-bijective functions and the multiplicity of
their inverse functions and, therefore, the flow function, but this is illustrated for a couple of
examples in Appendices 1 and 7, my response to the MO-Q “Do the complex iterates of
functions have any meaning?”, and some other posts.

A flow function appears in Schröder's 1870 paper “Über iterirte Functionen” (pg. 303). The

connections among the flow function where and are
regarded as independent here;  Abel’s, Böttcher's, and Schröder's equations; and extremals of
functionals are concisely presented in “Variational aspects of the Abel and Schröder functional
equations” by McKiernan. Relationships among four different differential equations, the flow
function, and a translational functional equation are given in “Some differential equations related
to iteration theory” by Aczel and Granau. Further similar analysis as well as a historical
perspective is presented in "A survey on the hypertranscendence of the solutions of the
Schröder’s, Böttcher’s and Abel’s equations” by Fernandes. For additional info on these
functional / fixed point equations in CD, see the appendices on Schröder's and Frege’s forays
into FI below and the Wikipedia articles on Julia sets, fractals, and the Mandelbrot set. For
details of the relations among flow equations, CD, and QFT, see the paper by Curtwright and
Zachos cited below and the following discussion, the appendix on Ovsyannikov’s diff eq, and
other appendices below. OEIS A145271, A133437, links therein, and the section Related Stuff
below contain other refs.

Continuing the analysis, differentiation gives

in agreement with the inverse function theorem, and substitution gives

https://mathoverflow.net/questions/71429/do-complex-iterates-of-functions-have-any-meaning/417496#417496
https://mathoverflow.net/questions/71429/do-complex-iterates-of-functions-have-any-meaning/417496#417496
https://en.wikipedia.org/wiki/B%C3%B6ttcher%27s_equation
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8EE3CAE2FCB27C41173138A75A72D13B/S0008439500051778a.pdf/variational-aspects-of-the-abel-and-schroder-functional-equations.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8EE3CAE2FCB27C41173138A75A72D13B/S0008439500051778a.pdf/variational-aspects-of-the-abel-and-schroder-functional-equations.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/3DF0E8081A10D2519110A8FE9A9E0259/S0008414X00000304a.pdf/some-differential-equations-related-to-iteration-theory.pdf
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/3DF0E8081A10D2519110A8FE9A9E0259/S0008414X00000304a.pdf/some-differential-equations-related-to-iteration-theory.pdf
https://arxiv.org/abs/2102.12168
https://arxiv.org/abs/2102.12168
https://en.wikipedia.org/wiki/Julia_set
https://en.wikipedia.org/wiki/Fractal
https://en.wikipedia.org/wiki/Mandelbrot_set
https://oeis.org/A145271
https://oeis.org/A133437


The flow function has the translation group property, at least in the immediate neighborhood of

analyticity about ,

and Abel's equation in the Wikipedia article

is a special case of this translation equation. Changes of variables transform Abel's equation
into Schröder's, Böttcher's, Julia's, and others encountered in CD.  (Compare the group property
here with the group transformation / functional equation (A.11) for renormalization discussed by
Shirkov on pg 181 of Brown.)

Note that

This also follows, without resorting to the iterated IG, from

Consequently, are the components of a vector orthogonal to the gradient of and,

therefore, tangent to the contour of at , and we have all the trappings of geometric Lie
theory and geometric optics with the tangency property

Reviewing the derivation of this tangency equation through diffeomorphism, or ‘coordinate’
transformation, it should be no surprise that solutions to this diff eq reflect that for the diff eq for
simple translation symmetry,



with , and that since the RGF method addresses invariance under certain
physical symmetries at critical points, this tangency equation pops up in this scenario. (See also
the sections ‘0.5 Self-similarities and traveling waves’ and ‘7.1 Solutions of traveling wave type’
in the book Scaling, Self-Similarity, and Intermediate Asymptotics by Barenblatt.)

Also note

and

We see the iterated IGs occurring in both QFT and CD in relation to flow equations,
so no surprise that the methodology in the two fields overlap. (Compare the integral with that of
(A.2) discussed by Shirkov on pg. 171 of Brown.)

In the appendices, I reprise the various flow equations from several perspectives.

(For an encoding in differential forms of several of the relations above, see sections 4.17 and
4.25 of “Geometrical Methods of Mathematical Physics” by Schutz.)

Curtwright and Zachos, in “Renormalization Group Functional Equations,” give an excellent
overview of the relationship between Schröder’s functional equation and the RG beta function
with examples worked out. In Appendix VIII on the Newtonian trajectory as a transport of data,
they present a connection to Newtonian dynamics and the tangency equation just above. (There
is another link, not presented in their paper, to physical dynamics via the relation of the inviscid
Burgers-Hopf differential equation with compositional inversion.)

In their appendix, C & Z delineate the connections between a simple physical model and the

flow equations. With and being the total energy and potential energy of a particle in
motion in a conservative potential field (i.e., the total energy is conserved), the kinetic energy is

where the momentum is ; the mass, ; and the velocity, . Then the amount of time
taken to traverse a trajectory from a fixed initial position at a fixed time to a fixed final

https://arxiv.org/abs/1010.5174
https://tcjpn.wordpress.com/2014/09/17/compositional-inverse-pairs-the-inviscid-burgers-hopf-equation-and-the-stasheff-associahedra/
https://tcjpn.wordpress.com/2014/09/17/compositional-inverse-pairs-the-inviscid-burgers-hopf-equation-and-the-stasheff-associahedra/


position at at time with the final time determined by the velocity of the particle along its
path to the final fixed position is

This should be interpreted as and having the same sign, as and being
parallel vectors, or, more precisely, as being the line element at that part of a trajectory for

which is the tangent vector. For more discussion on C & Z’s presentation, see Appendix 6.

More precisely, assign and . Then the inverse function theorem

implies the string of equalities

in which I identify

Notwithstanding H. G. Wells’ spin and quantum machinations, must always be
increasing along the trajectory, but, of course, the particle can reverse directions of travel, so
bijectivity between position and time is maintained typically only locally along the trajectory. In

other words, is classically indeed a global function, but is not a global
function necessarily but typically only over restricted intervals of time between turning points. In

other words there will typically be a patchwork of bijective functions characterizing and its



local inverse. See some examples below and in the pdfs in my posts “Local compositional
inversion of f(x) = x / (1+ax+bx^2)” and “A Taste of Moonshine in Free Moments”.

The physical solution is governed by the equivalent mathematical formalisms of Newtonian,
Hamiltonian, Lagrangian, and Hamilton-Jacobi dynamics, allied to the calculus of variations, and
the physical ideas surrounding Maupertuis’ principle of least ‘action’, Fermat’s principle of least
time (more accurately, stationary principles), Huygen’s principle, and geometrical optics (see,
e.g., Feynman’s Lectures on Physics).

Reprising some of the formulas for the infinigen above with a change in variables to avoid
confusion:

and

Of course, we are free to switch the roles of the forward and inverse functions to obtain a mirror
panoply of dual equations:

and

https://tcjpn.wordpress.com/2022/03/23/local-compositional-inversion-of-fx-x-1axbx2/
https://tcjpn.wordpress.com/2022/03/23/local-compositional-inversion-of-fx-x-1axbx2/
https://tcjpn.wordpress.com/2022/01/29/a-taste-of-moonshine-in-free-moments/
https://en.wikipedia.org/wiki/Maupertuis%27s_principle
https://en.wikipedia.org/wiki/Fermat%27s_principle
https://en.wikipedia.org/wiki/Fermat%27s_principle
https://en.wikipedia.org/wiki/Huygens%E2%80%93Fresnel_principle
https://en.wikipedia.org/wiki/Hamiltonian_optics
https://www.feynmanlectures.caltech.edu/I_26.html


with

and since

derivation gives the inverse function theorem

which implies that the graphs of the pair of inverse functions and are

reflections of each other through the bisecting diagonal line (e.g., graph and

.)

The two vectors with components and are then orthogonal to each other,
implying the flow lines of the two fields are mutually orthogonal as well, a feature central to the
theory of geometric optics and its applications to quantum physics.

To illustrate these interconnections, identify and . Then while

and



and

Identifying with the time , then and , with plenty of choices for the

function over the duration . Along any path for general , tangency is

maintained, i.e., noting that for any function,

so

which is equation (85) of C & Z, their one-dimensional ‘Gell-Mann–Low transport equation’ for

and .

With , the tangency condition becomes



so the flow field and potential energy track each other and for a conservative potential

giving the fundamental equation of Newtonian classical mechanics

Then with the Hamiltonian

we can identify

and

The dual Lagrangian formulation is

so

and



and the Euler-Lagrange equation is satisfied

and is equivalent to

The Hamilton-Jacobi formalism (HJF) of classical geometric optics and mechanics provides
another approach to the physics of motion (see also Chapter 3 of these course notes by
Helliwell and Sahakian).

A controlling differential equation of the HJF (see p. 417 of "The Variational Principles of
Mechanics" by Lanczos or Cline?) is

where is Hamilton's characteristic / principle function, is the Maupertuis abbreviated
action, and the conjugate momentum is

With , the conjugate momentum for time is the negated energy, i.e.,

and

so

https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation
http://www.physics.hmc.edu/~saeta/courses/p111/index.php/Y2013/Notes


consistent with

For a particle moving in a conservative potential, i.e., with independent of
and, therefore, with constant energy , the Hamiltonian characteristic function is

so

Then the variation of with

vanishes for , i.e., the velocity vector remains tangent to the path the particle
follows and this tangent is determined by the conservative potential. For example, for a free

particle moving without the influence of any forces, characterized by , let the initial
and final positions, and , of the particle be fixed at fixed times and . Then the
average velocity of the particle traveling, whether along a geodesic or not, between those two

fixed space-time events is . The deviation at time in kinetic energy of a
particle moving along any curve from that of the same particle moving with the constant velocity

along a straight line, i.e., along a geodesic, is, with ,

and the deviation averaged over the fixed duration is



but also

so

implying any variation of the path from a straight line, which would vary the tangent and
therefore the velocity of a particle from the average, or any acceleration / deceleration along the
straight path, would lead to an averaged kinetic energy larger than that of the a particle moving
along a straight line with a constant velocity that satisfies the initial and final space-time
conditions, so only for a particle moving in a straight line with constant velocity is the minimum
average kinetic energy achieved. Consequently, this physical solution is achieved when the

action is a minimum, which implies vanishes for the free particle; that is,



This is an example of one form of the principle of stationary action for the action defined for a
potential independent of as

and

so

implies



where

This is all consistent with the local inverse pair and when local
bijectivity holds and the associated derivative relation

so

or

The physics enters through

A test particle then can be used to map the flow lines and therefore the conservative potential.

Note , for the initial condition ,

and for our free particle with constant total energy all  kinetic,



If we evaluate the infinigen series at , we have .

To illustrate the equivalence of the Newtonian, Hamiltonian, Lagrangian, and Hamilton-Jacobi

formalisms, consider the iconic harmonic oscillator with the potential and spring
constant . Newton’s equation becomes

With initial conditions at , the solution is

The Hamiltonian formalism gives

where and

The Lagrangian formalism gives



and the Euler-Lagrange equation is

The Hamilton-Jacobi formalism gives

This is discussed in terms of RG flow in “RG flows, cycles, and c-theorem folklore” by Curtright,
Jin, and Zachos.

For the harmonic oscillator with our initial conditions, the variation stationary condition

when integrated gives

and inverting.

https://arxiv.org/pdf/1111.2649.pdf


where the constant is determined by , so

For more on the action and the associated flow function, see Appendix 4.

From the intro to “Renormalization Group Functional Equations” by Curtright and Zachos:

The renormalization group (RG) of Gell-Mann and Low [14], and of Stueckelberg and
Petermann [24], has an elegant mathematical expression in terms of the functional conjugation
(FC) methods of Ernst Schröder [23]. This expression provides a powerful tool to describe the
behavior of physical systems under either infinitesimal or finite, perhaps large, changes in scale.
While this fact is often overlooked, and not usually invoked in the solution of various problems
posed in the RG framework, it is readily apparent upon reading [14] (see especially Appendix B;
also see [19]) and surveying the literature on functional equations [16]. Moreover, it may be
profitable to bear in mind the logical connections between these two subjects when considering
the step-scaling approach in lattice gauge theory [4, 20], where the power and utility of the
methods are manifest.

K & M present the following comparison between structures/concepts in the theory of flow
equations encountered in CD and QFT.

● rooted trees Feynman diagrams

● nonlinear analysis perturbative path integrals

● fixed point equations renormalization group equation

● powers of nonlinear operators background field technique

●

● composition successive integrations

https://arxiv.org/pdf/1010.5174.pdf


There are several partition polynomials associated with iterated IGs and flow equations. They
are accompanied by diverse combinatorial models, such as lattice paths, trees, polytopes, and
polygons, and, sInce compositional inversion plays an integral role in characterizing binomial
Sheffer polynomial sequences, these polynomials weasel their way into a multitude of niches in
operator theory and higher algebra, classical and quantum.

The iterated IGs are characterized in normally-ordered form by the Comtet-Scherk partition
polynomials of A139605. A refinement of these are the Connes-Moscovici (CM) partition

polynomials for the derivatives in terms of the derivatives , called
elementary differentials (EDs), when and are vector functions. The coefficients, the CM
weights, of these polynomials are presented in A139002. K & M elaborate on low order
examples on p. 14.

Add the assumptions of analyticity in a neighborhood about the origin and

, then , implying the IIGs acting on and evaluated at
give the series coefficients of different reps of the Lagrange inversion formula (LIF) for
compositional inversion, series reps which depend on those for the source, , and the target

series. The actions are characterized by the refined
Eulerian partition polynomials of A145271, with the changes in notation , , and

, which then give the e.g.f. in for . (See my answer
to the MO-Q “Formula for n-th iteration of dx/dt=B(x)” for more details.)

Schröder, in his 1870 paper "Ueber unendlich viele Algorithmen zur Auflösung der Gleichungen"
(English translation “On infinitely many algorithms for solving equations” by Stewart, with some
errors in transcription of some polynomials) on Newton's fixed point method for finding the zeros

of functions and FI, uses the action to generate a flow function containing the
partition polynomials of the LIF series of A134685 (evaluated at general rather than ,
more on this in Appendix 2). These partition polynomials give the antipode of the Faa di Bruno
combinatorial Hopf algebra--not so surprising as Brouder shows in "Trees, renormalization, and
differential equations" that if you understand the calculus of differentiation you understand
fundamental aspects of Hopf algebras.

Heinrich Scherk introduced the normal-ordered form of iterated IGs in his dissertation in 1823
(see A139605), one of the two mathematically talented Graves brothers, Charles, (both
colleagues of Cayley, Sylvester, and Hamilton) published the generalized shift identity for the
flow function above in "On a generalization of the symbolic statement of Taylor's theorem" in
1852, and then Cayley showed in 1857 that the EDs of the CM partition polynomials are in
bijection with the trees of 'naturally grown' forests of planar rooted trees with the CM weightings
giving the multiplicity of each type of tree and, therefore, each distinct ED. Later Merson and
Butcher, in the 1950s and 60s, independently rediscovered this bijection in developing
integration methods of the Runge-Kutta type to solve nonlinear differential equations. Butcher

https://oeis.org/A139605
https://oeis.org/A139002
https://mathoverflow.net/questions/41039/formula-for-n-th-iteration-of-dx-dt-bx/66603#66603
https://www.semanticscholar.org/paper/Ueber-unendlich-viele-Algorithmen-zur-Aufl%C3%B6sung-der-Schr%C3%B6der/7d37b4dbf960770e926575456b9504f5e785b048
https://drum.lib.umd.edu/handle/1903/577
https://en.wikipedia.org/wiki/Newton%27s_method
https://oeis.org/A134685
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.180.7535&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.180.7535&rep=rep1&type=pdf


emphasized the group property of composition in his methods. This is discussed by K & M just
after they introduce a flow equation and the CM elementary differentials on p. 14 (see also the
Butcher group). See MO-Q link above for the meaning of 'naturally grown' and my relevant
answer to the MO-Q "In splendid isolation" for more on the historical aspects and other
approaches by other researchers.

Menous and Patras, in "Right-handed Hopf algebras and the preLie forest formula" in Sec. 4
The PreLie Forest Formula (pp. 10-12), illustrate precisely the LIF polynomials that Schröder
was led to, the antipode, a.k.a. a Zimmerman forest formula (ZFF), of the combinatorial Faa di
Bruno Hopf algebra. The other common antipode that pops up in QFT is the LIF of A133437 for
the inverse o.g.f. of an o.g.f., related to the combinatorics of the faces of the associahedra
(more precisely, the Euler characteristic partition polynomials of the associahedra).

The interplay of composition and decomposition among differentials and rooted trees formalized
via Hopf algebras has been used by Broadhurst, Brouder, Connes, Kreimer, and others to
remove divergences and calculate higher order summations of Feynman diagrams.

K & M give fairly enlightening discussions, toy models, and other examples of the
correspondences sketched at the top.

M & P state:

These antipode formulas have been investigated by J.C. Figueroa and
J.M. Gracia-Bondia [...] in the 2000s. They obtained a simple direct proof
of Zimmermann’s formula in QFT and showed more generally that one can
employ the distributive lattice of order ideals associated with a general partially ordered set and
incidence algebra techniques in order to resolve the combinatorics of overlapping divergences
that motivated the development of the renormalization techniques of Bogoliubov, Dyson, Salam,
Zimmermann et al.

Zeidler in sections 3.4.4 and 3.4.5, pp. 135-140, of "Quantum Field Theory II; Quantum
Electrodynamics" has a leisurely discussion of the antipode / ZFF for the Faa di Bruno Hopf
algebra, and, presents throughout the book, the relation of ZFFs to renormalization in QFT.
Pages XI and XII of the Preface give a very nice intro to the topic.

Herzog, in "Zimmermann’s forest formula, infrared divergences, and the QCD beta function",
presents the beta function (eqn. 14 on p.5) in QCD up to five loops.

A common theme in analytic and algebraic geometry, dynamical and moduli spaces,
characteristic and other special polynomials, combinatorics, and physics is the relationship
between compositional and multiplicative inverse pairs, as might be expected since they are
fundamental group operations (e.g., see refs for A145271, A133437, A134264, and A133314).

See also

https://en.wikipedia.org/wiki/Butcher_group
https://mathoverflow.net/questions/97512/in-splendid-isolation/257205#257205
https://arxiv.org/abs/1511.07403
https://oeis.org/A133437
https://arxiv.org/abs/1711.06121
https://oeis.org/A145271
https://oeis.org/A133437
https://oeis.org/A134264
https://oeis.org/A133314


● “Hopf-algebraic renormalization of Kreimer’s toy model” by Panzer

● The brief overview "Lessons from Quantum Field Theory -- Hopf Algebras and Spacetime
Geometries" by Connes and Kreimer.

● And hot off the press, "Gentle introduction to rigorous Renormalization Group: a worked fermionic
example" by Giuliani, Mastropietroc, and Rychkovd

______________________________

Appendix 1: Peanuts and finding zero--on Schröder’s functional series

In light of the analysis above, equation (21) in Schröder’s paper cited above, using iterative

derivatives to determine a zero of a function, becomes, with ,

where, the arrow indicates a mapping via analytic continuation of the series typically to multiple
solutions depending on the region in which lies. As illustrated in the examples below, a
non-bijective analytic function does not have a global inverse function but rather has different
local inverse functions varying with the regions of over which different bijections locally hold.

The subscript indexes these multiple local inverse functions. Then implies

and we have our zeros.

Example I:

and .

Then the naive flow function is

https://arxiv.org/pdf/1202.3552.pdf
https://arxiv.org/pdf/hep-th/9904044.pdf
https://arxiv.org/pdf/hep-th/9904044.pdf
http://link.springer.com/article/10.1007/JHEP01(2021)026
http://link.springer.com/article/10.1007/JHEP01(2021)026


.
This doesn’t indicate which sign should be chosen for specific values of and to obtain
smooth flow.

The actions of the IG are given by

,

,

,

and, for ,

The Taylor series for is

which is convergent for , whereas the exponentiated IG, analytically continued,
gives



When convergent, for , the series gives , and for , The

derivative changes sign as passes through . The series can be
expressed also as

Approximating with gives and

Approximating with gives and

.

For numerical investigation, examples for the flow series and function for use with Wolfram
Alpha are

.2 - (1/2) (1/(1-.2)) t  +   sum (   (-1)^n (1/2^n) (2n-3)!!  ( 1/(1-.2)^(2n-1) )  ) (t^n/n!) , n=2, 100

and

1+ sqrt(.5 +(1-.2)^2).

Now what will Schröder’s formula give?



since as can be shown from the more general case below

, giving the double zero of .

Example II:  A general quadratic



and, for ,

The ’naive’ flow function is

the zeros of



and the zeros shifted by of

with

and

Consistently,

Checking the basic compositional iteration behavior--the translation property:

The associated IIG series (IGS) is



where are the double factorials of A001147, with numerous combinatorial
interpretations, and are the even more chameleon-like Catalan numbers

of A000108, which have the o.g.f.

(The Catalan numbers occur as the number of vertices of the associahedra, the number of trees
in the forests of rooted planar trees, the number of planted rooted trees in these forests, and,
fittingly, as the solution to Schröder’s first problem in his paper on four combinatorial problems,
among a long list of other manifestations.)

Then

https://oeis.org/A001147
https://oeis.org/A000108


with and , the ancient venerable quadratic formula, and, for

,

Note

Note also

and

,   so

and

.

Then with , we have the Theremin-Schröder series



which gives the two roots of for real zeros--the larger one when

, or , i.e.,when is to the right of the minimum

of the quadratic and the smaller when is to the left. returns , the
-coordinate of the minimum, for the analytic continuation, but the series itself is divergent.

for the quadratic case is the sum of and a zero of the quadratic equation

with and .

To get a feel for the effects of varying and on the quadratic curve , note
completing the square gives

with

,

,

.

Then, for and real, can be regarded as horizontal ( ) and vertical ) translations

of the basic quadratic curve , quite reasonable since downward vertical
translation affects only the distance between the zeros and not the -coordinate of their



midpoint and horizontal translation, vice versa. These are pure translations, so the orientation

and shape of the curve does not vary with changes in and from that of

. The -coordinate of the midpoint between the real zeros of is

and this is also the -coordinate of the minimum since . To understand the

motions induced by changing and , we need consider only action on .

Varying , and therefore , and adding this to displaces vertically to coincide

with the curve while varying , and therefore , translates

both vertically and horizontally for adding to moves the minimum of

at the origin along the curve so that our initial quadratic

now coincides with . The origin remains a zero of

the curve while its minimum moves along . The effects of varying or follow

analytically from the vanishing of at the minimum

of , so the minimum of flows along the parametric curve

, i.e., along . The motions induced by varying
and , or and , commute and linearly superpose on each other. (Use the Desmos graphing
calculator with sliders for and to confirm visually these motions.). Another perspective for

getting a handle on the effect of varying is to note that is the tangent to

the quadratic at , so, for , varying moves  the quadratic

such that this is the tangent to the quadratic at the origin.

Numerical checks with Wolfram Alpha using

( -b + sqrt( b^2 + 4(t+z^2+bz) ) )/2

and

z + (1/(2z+b)) t  +   sum (   (-1)^(n+1) (2^(n+1)) (2n-3)!!  ( 1/(2z+b)^(2n-1) )  ) (t^n/n!), n=2,100

give, for , , and ,

( -1 + sqrt( 1^2 + 4((1/8)+(0)^2+1(0)) ) )/2  as approximately .112372

and

0+ (1/(2(0)+1)) (1/8) +   sum (   (-1)^(n+1) (2^(n-1)) (2n-3)!!  ( 1/(2(0)+1)^(2n-1) )  ) ((1/8)^n/n!),
n=2,100 as approximately .112372.



______________________________

Appendix 2: Taylor series expansion of Schröder and Theremin

Ignoring the intricacies of the lack of a unique inverse function for a non-bijective function, I’ve
sketched below the arguments in Theremin and Schröder based on Taylor series machinations.
The main features to take from this presentation are the roles of the general inversion
polynomials and the fact that the two investigators arrive at an evaluation of a flow function
though they do not couch their arguments in this language.

With and , suppressing arguments and using subscripts to indicate the
order of differentiation,

and the actions of the first few iterated derivatives are

These are the polynomials on p. 330 of Schröder and of the OEIS entry A134685. There are
some transcription errors in Stewart's translation (p. 15). Theremin shows only up through the
third order derivative in his 1855 paper.

Note the first derivative gives

https://oeis.org/A134685


in general a nonlinear autonomous flow ODE for .

Schröder and Theremin expand the inverse function as a formal Taylor series

about a zero of , say , as

With the initial replaced by , by , and by , this becomes equation 21 on
p. 330 of Schröder

As I have shown above, when convergent,



and performing the substitutions, Schröder's series equation becomes, when convergent,

a zero of .

With the series truncated at order (m-1), this is eqn. (17) on pg. 1759 of “On Schroder’s families
of root-finding methods” by M. Petovic, L. Petovic, and D. Herceg. Examples are given beneath
eqn. (19) on pg. 1760 in which the inversion polynomials A133437 occur, related to the
associahedra. According to the authors, the equation is attributed in the Russian literature to
Chebyshev (1837 or 1838), but others ascribe it to Euler.

______________________________

Appendix 3: Schröder and missed opportunities

Apparently because Schröder was eager to develop an ‘absolute algebra’ based on
mathematical logic, a phrase he coined, he missed an opportunity to scoop late 20’th century
mathematicians on some early 21’st century mathematics. There’s been a renewed interest in
the associations among the two families of convex polytopes the associahedra and
permutahedra, Lagrange inversion formulas, and scattering processes in certain QFTs.

To set the stage: The last of the grand Druids (as Keynes would put it--after all it was an apple
tree!), Newton, seems to be the first to have written out the first few inversion polynomials of
normLIZED A133437 in a formula he developed for compositional inversion of power series
(o.g.f.s), which turned out to be the refined Euler characteristic (or signed face) polynomials of
the associahedra. Loday, circa 2000, seems to be one of the first to have pointed out this
relationship between the associahedra and compositional inversion. In the 1820s we have
Heinrich Scherk exploring infinigens of the Lie type and iterated derivatives and also Abel
exploring functional equations that have the form of what are now called formal group laws,

which are special cases of the flow function presented above with

. Cayley and the Graves brothers, John and Charles, come around in the 1850s to
develop relationships among differential operators, flow functions, commutators, and
combinatorial tree models along with the combinatorics of polygon dissections with Kirkman and
much earlier with Segner, Fuss, Catalan, and Euler. An appetite for abstract algebra is whetted
in 1843 by Hamilton’s invention of the quaternions and John Graves’, of the octonions and
perhaps Hamilton’s development of the icosian calculus and its relation to moves on the vertices

https://oeis.org/A133437
https://oeis.org/A133437
https://en.wikipedia.org/wiki/Icosian_calculus


of a dodecahedron. And, we have well before all these illustrious figures, the mathemage
Archimedes presenting the 3-dimensional version of the family of convex polytopes called the
permutahedra / permutohedra.

Enter Schröder into this milieu with his penchant for combinatorics, associations with Klein and
Hermann Grassmann, studies of Abel and Cayley, and desire to develop the fundamental
foundations of an ‘absolute algebra’. In "On the exterior calculus and invariant theory," Barnabei,
Brini, and Rota write, "To the best of our knowledge of published work, the first mathematicians
to understand, albeit imperfectly, the program of [H. Grassmann's] Ausdehnungslehre were
Clifford and Schröder ..."  and "It was Schröder, in an appendix to his “Algebra der Logik,” who
first stressed the analogy between the algebra of progressive and regressive products, and the
algebra of sets with union and intersection." His interests were diverse, extending into physics

and chemistry. Schröder, in his doctoral thesis in 1862, defined -polygons, polygons with a
fractional number of sides and, between 1869 and 1871, he published his paper “On four
combinatorial problems” on the distribution, under different restrictions, of brackets, or
parentheses, among strings of symbols, giving the Catalan numbers A000108, the little
(A001003, Wikipedia) and large (A006318, Wiki) Schröder numbers, and A000311.

As I mentioned above in the analysis of his work on FI in extending Newton’s, Raphson’s, and
Lagrange’s numerical methods for finding the zeros of polynomials,  Schröder generated the
first few polynomials of A134685 for the coefficients of the formal Taylor series of the
compositional inverse of a formal Taylor series (he cites Theremin, “Recherches sur la
résolution des équations de tous les dégres” as an influence, 1855). This family of inversion
polynomials can be rescaled to give the power series (o.g.f.) of the inverse of a power series,
which would give Newton’s inversion polynomials and the combinatorics of the associahedra
(which had not yet been invented at that time). In the same paper, Schröder generates the
logarithmic polynomials A263634, a.k.a. the cumulant expansion polynomials of A127671,
which are important in the theory of symmetric functions and the operator calculus of Appell
Sheffer polynomials and contain the refined Euler characteristic / face polynomials of  the
permutahedra, A133314, which double as the polynomials for the formal Taylor series of the
multiplicative inverse of a formal Taylor series, and, therefore, the polynomials for the

coefficients of the infinigen for Schröder’s polynomials. He did not
normalize these and perhaps for that reason did not recognize the number of distinct faces of
the 2-D (a hexagon) and 3-D permutahedra (an Archimedean truncated octahedron) in the
coefficients of the polynomials--a little surprising since his thesis was concerned with polygons,
but not too surprising for I know of principle researchers even in the last five years who had not
been aware of the connections of the polynomials they encountered in their work in QFT to
those for the associahedra until I informed them--the perils of compartmentalization! I’m sure
Schröder would have been thrilled to have noticed this, and it would perhaps have accelerated
research on the interplay of geometry, differential operators, combinatorics, and algebra by
several decades, maybe a century or more. He was poised to follow an enlightened path yet
chose to leap into the abyss of mathematical logic, but he had his reasons and his fun.

https://oeis.org/A000108
https://oeis.org/A001003
https://en.wikipedia.org/wiki/Schr%C3%B6der%E2%80%93Hipparchus_number
https://oeis.org/A006318
https://en.wikipedia.org/wiki/Schr%C3%B6der_number
https://oeis.org/A000311
https://oeis.org/A263634
https://oeis.org/A127671


______________________________

Appendix 4: Maupertuis action (abbreviated / reduced / symplectic) for the
harmonic oscillator

Reprising,

and the infinigen for the HO is

Scaling to dimensionless quantities, we have the infinigen

Then

the inverse function is

the naive flow function is

and the associated series IGS is



The action of powers of the infinigen on generates the inversion polynomials of A145271 in

terms of and its derivatives of. For our SHO, the actions are

and the pattern repeats, giving

Using Desmos with and as sliders, for , gives a visualization and  numerical
agreement of the equality

as a variable is changed.Sliding gives the projection onto the plane of a half-circle rotating on
the sphere centered about the origin. For , the projection is the line , and

for , a half-circle above the -axis on the plane.

Define the conjugate function

Then when , the two separate curves form a closed curve, each curve being a
reflection  of the other through .



is constrained to lie between 1 and -1, so let and where is the angle
from the positive vertical -axis and that for the -axis. Then

parametrizes the point in spherical coordinates as a point moving on a sphere of unit
radius.

______________

Reprising,

(Aside from the last energy term linear in the time and an overall scale factor, this is equation (3)
in “RG flows, cycles, and c-theorem folklore” by Curtright, Jin, and Zachos.)

Should have

https://arxiv.org/pdf/1111.2649.pdf


and

Series expansion gives

Some numerology:

The denominators are A002595 = 1, 6, 40, 112, 1152, 2816, 13312, 10240, 557056,

1245184,..., coefficients of the Taylor series expansion of .  Also arises from
arccos(x), arccsc(x), arcsec(x), arcsinh(x).

The numerators are A091154 = 1, 1, -1, 1, -5, 7, -21, 11, -429, 715, -2431, 4199, -29393 .... mod
signs, the numerator of Taylor-Maclaurin expansion of the arc length of Archimedes' spiral, in
polar coordinates

https://oeis.org/
https://oeis.org/A091154


The Taylor series coefficients mod-signs are A079484 = 1, 3, 45, 1575, 99225, 9823275,

1404728325, ... , , where the double factorial is A006882 = 1, 2, 3, 8, 15, 48,
105, 384, 945, 3840, 10395, 46080, ..., containing the odd double factorials , defined recursively

as for .
45/3 = 15, 315/45 = 7, 14175/315 = 45, 467775/14175 = 33, 42567525/ 467775 = 91,

Divide the coefficients by A117972 =1, -1, 3, -45, 315, -14175, 467775, -42567525, 638512875,

-97692469875, 9280784638125 , the numerators of (the derivative of zeta)  to get
the integer sequence

A079484 / A117972 =

1/1, 3/3, 45/45, 1575/315, 99225/14175, 9823275/467775, 1404728325/42567525,
273922023375/638512875, 69850115960625/97692469875,
22561587455281875/9280784638125

https://oeis.org/A002596 = 1, 1, -1, 1, -5, 7, -21, 33, -429, 715, -2431, 4199, … , the numerators

in the expansion of . The absolute values give the numerators in the expansion of

, also the numerators of or the odd part of the -th Catalan number.   .
Also in the “Addendum to the Elliptic Lie Triad.” Also A098597: 1, 1, 1, 5, 7, 21, 33, 429, 715,

2431, 4199, 29393, 52003, 185725, … , the numerators of , the odd part of the n-th

Catalan number, also the numerators of .?????? Check these ?????
Essentially the last two sequences are the same except for the  initial values. They appear in
Addendum to the Lie Triad as well as numerators of series expansion of the two zeros of a

https://oeis.org/A079484
https://oeis.org/A006882
https://oeis.org/A117972
https://oeis.org/A002596
https://oeis.org/A098597


Riccati equation. See also “Combinatorial Identities Associated with a Multidimensional
Polynomial Sequence” by Cacao and Malonek.

A117972 also A048896(n), n >= 1: Numerators of Maclaurin series for 1 - ((sin x)/x)^2,
a(n), n >= 2: Denominators of Maclaurin series for 1 - ((sin x)/x)^2, the correlation function in

Montgomery's pair correlation conjecture.

-1/4, 3/4, -45/8, 315/4, -14175/8, 467775/8, -42567525/16, ...
-zeta(3)/(4*Pi^2), (3*zeta(5))/(4*Pi^4), (-45*zeta(7))/(8*Pi^6), (315*zeta(9))/(4*Pi^8),

(-14175*zeta(11))/(8*Pi^10), ...

From MathWorld,

Cat_n: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,

1, 1, 2/2 = 1, 5, 14/2 =7, 42/2 = 21, 132/4 = 33, 429, 1430/2 = 715, 4862/2=2431, 16796/4 = 4199 ,
58786/2=29393,  208012/4  = 52003,  742900/4   = 185725

Divisors  1,1,2,1,2,2,4,1,2,2,4,2,4,4 are https://oeis.org/A048896.

A098597: 1, 1, 1, 5, 7, 21, 33, 429, 715, 2431, 4199, 29393, 52003, 185725, … , the numerators of ,

The derivatives may be given by the reflection formula as derivatives at zeta(n) and also D_x
\ln(\zeta) = \zeta’/zeta.

From my MO-Q,

https://oeis.org/A048896


For ,

Numerators of the Bernoulli numbers https://oeis.org/A027641 =  1, -1, 1, 0, -1, 0, 1, 0, -1, 0, 5,
0, -691, 0, 7, 0, -3617, 0, 43867, 0, -174611

The Taylor series has the coefficients A079484 = 1,-1,-3,-45,-1575, -99255, … .

Powers of in the denominators are https://oeis.org/A005187 = 0, 1, 3, 4, 7, 8, 10, 11, 15, 16,

18, 19, 22, … , , also denominators in expansion of are
,  also - number of 1's in binary expansion of , pops up in the Whitney immersion

theorem.

Apply A145271 for the inverse:

Let .

https://oeis.org/A027641
https://oeis.org/A079484
https://oeis.org/A005187
https://oeis.org/A145271


The numerator polynomials all have zeros on the imaginary axis. They are a normalized version
of the numerator polynomials of A091894, which has as an o.g.f (expanding in t)

with the inverse in

and are, therefore, related to the Legendre and Gegenbauer polynomials.

gives a zero of

https://oeis.org/A091894


so perhaps can be related to the Riccati equation

and, therefore, the elliptic triad. The polynomials from this g.f. are not divided by any function
and are not alternatingly even and odd polynomials.

In polar coordinates, with and for ,

.

and

,

so the derivatives also have the generating function

but that should be the same as the series in of

Same numerator polynomials mod signs generated by .

Alpha Wolfram confirms.

Compare with

Wolfram Alpha gives



series in t of  (1 - 2*t - sqrt((1 - 2*t)^2 - 4*t^2 *x)) / (2*t*x) gives the same as

series in t of  (   (1/(  -x   *t))*  \sqrt(1 +((1/(i*sqrt(x)))+(2*(i*sqrt(x))*(-t)*(   (-1/x)  +1)))^2)/ \sqrt(
(-1/x) +1) /2   )  -(1/x)+(1/(2tx))

Inspection of the series expansion of reveals that dividing the series by

and then replacing by gives

Subtracting out the initial 1 and , dividing out the 2, and changing signs leaves

Reversing the polynomials, halving their exponents, and removing the signs is achieved by

replacing by and the new by , giving the series

Finally divide by . These machinations morph our initial g.f.

into



which is an o.g.f. for the polynomials of A091894.

Wolfram Alpha check:

series in t of  (   (1/(  -x   *t))*  \sqrt(1 +((1/(i*sqrt(x)))+(2*(i*sqrt(x))*(-t)*(   (-1/x)  +1)))^2)/ \sqrt(
(-1/x) +1) /2   )  -(1/x)+(1/(2tx))

The factors normalizing the polynomials are signed A049606.

The coefficients of the lowest order terms of each numerator polynomial are

The alternating number sequence is, of course, A079484 = 1, 3, 45, 1575, 99225, 9823275,

1404728325, 273922023375, ..., the unsigned Taylor series coefficients of .

Factors are https://oeis.org/A001790 = 1, 1, 3, 5, 35, 63, 231, 429 ?

1, 3, 45, 1575, 99225, 9823275, 1404728325, 273922023375, 69850115960625,
22561587455281875, 9002073394657468125,

https://oeis.org/A079484
https://oeis.org/A001790


There are five OEIS entries for 3, 3, 15, 45, 315, 315, 2835, 14175, 155925. a(n+1)/a(n)
=155925/14175 = 11 , 14175/2835 = 5, 2835/315 = 5, 315/315=1, 315/45 = 7, 45/15 = 3, 3/3 = 1
????

https://oeis.org/A156769 and https://oeis.org/A036279 =1, 3, 15, 315, 2835, 155925, 6081075,
638512875, 10854718875, 1856156927625, 194896477400625 differ in next term.

Checking the formalism with the partition polynomials of A145271:

Let then

in agreement with , ,
and the expansion of

evaluated at is the -th Taylor series coefficient of the compositional

inverse of .

https://oeis.org/A156769
https://oeis.org/A036279


For some more recent notes on these relationships, see my last contribution (Oct. 2021) to my
MO-Q “Geometric / physical / probabilistic interpretations of Riemann zeta(n>1)?”.

______________________________

Appendix 5: Binomial Sheffer / Jabotinsky polynomials and functional iteration

Composition of functions and with and nonvanishing first
derivatives can be related to multiplication of matrices via the Sheffer calculus. In umbral

notation, the binomial Sheffer polynomials and of degree
associated with these functions have the exponential generating functions (e.g.f.s)

and

Let and be the associated matrices of coefficients and of the polynomials. The
matrix product

then represents the coefficient matrix with elements of the polynomials resulting
from the umbral composition

Consequently, the e.g.f. for these resulting polynomials is

with

.

Repeated compositional / functional iteration of the function , e.g., ,

can be represented as a power of the coefficient matrix --in the example , or equivalently,

as the umbral composition .

See also the refs on Jabotinsky and “Continuous Iteration of Dynamical Maps” by Aldrovandi
and Freitas.

______________________________

https://mathoverflow.net/questions/112062/geometric-physical-probabilistic-interpretations-of-riemann-zetan1/401540#401540
https://arxiv.org/abs/physics/9712026


Appendix 6: Tangency / transport equation

In "Renormalization Group Functional Equations" by Curtright and Zachos, the authors give In
their Appendix the traversal time for a particle moving in a conservative potential along a

trajectory from the initial position at to as (their eqn. (83)

They treat and as independent variables and differentiating the equation w.r.t. , they
obtain the variational result

implying, since ,

We can identify the flow function

and equation (89) of C & Z,

as the associated IIG series.

As C & Z point out, this may be put into a version of the Schröder FC equation by choosing a

pair of inverse functions and with



In the notation above, corresponds to and to , so

substituting for in the IIG series gives

Counterparts to these maneuvers can be found in equations (B. 14) - (B. 26) of one of the
earliest papers (1954) on renormalization group flow "Quantum electrodynamics at small
distances" by Gell-Mann and Low, which inspired Wilson to formulate the RG flow methodology.
G & L  thank the Nobel laureate T. D. Lee for suggesting this method of solution to their
functional equations for photon propagation. As Shirkov points out in his contribution A.25
Functional Self-Similarity or Synthesis (starting on pg. 181 of Brown), the group transformations
above are tantamount to similarity transformations, well-known by physicists, as discussed in
the Rosenblatt and the Goldenfeld refs in the Related Stuff section below.

Another way to express this is

since

with , identified as the diff op / infinigen rep of the dilatation / dilation operator of .
As C & Z point out, Sidney Coleman (a student of Gell-Mann) used the formalism above to  to
discuss renormalization in "Aspects of Symmetry" (in his 1971 lecture 3 “Dilatations, section 4
The resurrection of scale invariance, subsection 4.1 The renormalization group equations and
their solution”, beginning on, coincidentally, the fortuitous p. 88), in which the two infinigens

and appear and an analogy is drawn to the density of a population of bacteria
growing and moving with the flow of water in a pipe. (Compare this with the differential equation

for on p.76 of "A Combinatorial Perspective on Quantum Field Theory" by Yeats and
the “Callan–Symanzik equation” on Wikipedia and on pg. 175 of “Renormalization From Lorentz
to Landau (and Beyond)” compiled by Brown.) Coleman remarks, "The anomalies, which
complicate things terribly at low energies, simplify things enormously in the deep Euclidean
region. What a wonderful reversal! (this praise of the -terms is justified, of course, only if our
critical assumption--the existence of a zero in is justified. If it is not, the -terms remain
troublemakers, at high energies as well as low.)"

A more general transformation as in Coleman on pg. 77, with

https://en.wikipedia.org/wiki/Callan%E2%80%93Symanzik_equation


Letting , then

Equation (11) on pg.366 of  “On analytic iteration” by Erdos and Jabotinsky is a version of the

tangency condition. Identifying their with our . This is also eqn. (3.10) on pg. 463 of
“Analytic iteration” by Jabotinsky.

Compare the general tangency PDE with equation (2) of “‘Irreversibility’ of the flux of the
renormalization group in a 2D Field Theory” by Zamolodchikov and with the diffeq for the

Loewner chain, a one-parameter family of conformal mappings,

The same basic ODE and tangency PDE are found in  "The QCD -function from global
solutions to Dyson-Schwinger equations" by van Baalen, Kreimer, Uminsky, and Yeats (pg. 6,

eqn. 4):  The Dyson-Schwinger equation for is See pgs. 14 and 17
(eqns. 16 and 17) also for equations analogous, with obvious transformations, to the formalism
above.

Eqn. 3.50 on pg. 74 of “A mathematical perspective on the phenomenology of non-perturbative
Quantum Field Theory” by Ali Shojaei-Fard is also an ODE for a Lagrangian.

______________________________

Fermat’s principle of least action (actually, stationary rather than least) applied to light with the

velocity in a medium, ,  inversely proportional to the refractive index, ( specifically,

, with the speed of light in a vacuum) asserts that the path of a light ray
minimizes (or extremizes) the time of traversal from an initial point to a final point
determined by

______________________________

https://en.wikipedia.org/wiki/Loewner_differential_equation
https://arxiv.org/abs/0906.1754
https://arxiv.org/abs/0906.1754
https://arxiv.org/pdf/1811.05333.pdf
https://arxiv.org/pdf/1811.05333.pdf


Appendix 7: Reflections on analytic and geometric dualities of inverse pairs

To develop some facility with the notation and concepts, let's look at the interplay between the
algebraic and differential analysis and the geometry of local inverse pairs of functions in some
simple cases.

In this appendix, the notation indicates a functional dependence on the value of
whereas without an argument indicates no functional dependence on any variable. The
subscripts of and indicate that these are the and coordinates of a point on the curve

.

Define two functions

and

to be a local inverse pair if, in a neighborhood about the point

the relation

holds. This may be written more concisely for a neighborhood about the origin for which

and or more generally for not a local extremum as

Since the inversion curve is defined by the interchange of the abscissas and ordinates (the

coordinates) of the points of the functional curve , the two curves and, therefore,

their tangents are reflections of each other through the bisecting line This reflection

property holds globally for any function , so the associated local inverse functions are
sections of this reflected curve on each of which bijectivity (one-to-one correspondence of the

abscissa and ordinate) is satisfied. The singular points are local extrema of the function ,
marking the boundaries of the ranges of the local inverse functions, and for a local finite

extremum the derivative of vanishes (back to finding zero). (We could argue geometrically

that where tends to infinity, the derivative vanishes as well with an extremum where the
function tends to infinity through either positive or negative values on both sides of the
singularity and an inflection point when it tends to infinity with opposite signs on opposing sides



of the singularity.) Note inflection points, at which also vanishes, do not mark boundaries
for the local inverses.

Differentiation of the conjugate inversion equations gives

implying the tangent vector to the curve at the point is

and the vector orthogonal to this curve is

which is the tangent to the curve at the point

. This curve, whose tangents are normal to the

corresponding section of the curve , is obtained by two successive reflections--the

first through , the second, .

Analytically reprising: for the curve , the point on the curve, the local

inverse and the reciprocals of their derivatives and

,

the reciprocals of the derivatives are related by



the tangent vector at the point on the curve is

and the corresponding normal is

while

for the curve ,

the tangent vector at the point on the curve  is

and the normal is

The normality condition is expressed analytically as the vanishing of the inner product



The unlinked, nontrivial normality conditions true for any or in the local bijective sections
are

Keep in mind that if the normality equation mixes and , they can not be independently
chosen even within the bijective section but rather must be related as the coordinates of a point

on the curve .

Specific examples:

A) and are a global inverse pair.

The derivatives are



and .

The derivative orthogonality conditions are

and

.

The vector orthogonality condition is the vanishing inner product of tangent vectors

B) The inverse curve to the curve / mapping

, a function with the reals as the domain, is the curve,

, which is not a function and has the restricted domain .

A Desmos plot about the origin of the curve and its reflection through ,

i.e., ,  gives:



The red curve is . The blue curve is , the reflection of the red curve in

the first quadrant through the black diagonal line , The green curve is , the
reflection of the red curve in the second quadrant through the black diagonal line. The combined

green and blue curves form the local inverse patchwork for ; more precisely, given

the point on , the reflected, or inverse, point is

.



In other words, for , i.e., omitting the minimum of the curve ,  the two

functional branches of the inverse curve are determined by the sign of of the point

on the curve ; more specifically, the two functional inverse branches /

sections are given by .

Let’s examine the  two bijective sections.

The  inverse curve to the curve

in the first quadrant ( of the -plane) is the curve

also in the first quadrant.

Then the inverse function pair for is

and

The derivatives are

and

.

The derivative reciprocal conditions are

and

.

The two equivalent vector orthogonality conditions are



and

The inverse curve to the curve

in the second quadrant ( and ) is

in the fourth quadrant ( and ).

The inverse function pair is

for and

for .

Check:

for and

for .

The derivatives are

for and

for .

The derivative reciprocal conditions are

for and

for .

The vector orthogonality conditions are, for ,



and, for ,

C. The curve inverse to the curve

, a function for all real is

for , not a function.

The inverse curve to the curve

for is

for .

The derivatives are

and

.

The reciprocal relations of the derivatives are

and



The validity of the second reciprocal relation is obvious, and the first follows from substitution in

the second of for (corroborated numerically by a plot).

The vector orthogonality conditions for are, of course, satisfied since the reciprocal
relations hold, so I will not illustrate these again.

The inverse pair for an increase of one period is

for and

for .

The inverse pair for an decrease of one period is

for and

for .

The general inverse pairs for are

for and

for .  ??????  re-check  ?????

For these inverse  pairs,

for all ,

and, for ,

.

Now overlay some fundamental physics on the math.

Return to



for and

for

and identify

for

with

for

as the trajectory of a mass attached to an ideal spring with spring constant , a harmonic

oscillator, with maximum displacement and , where is the
maximum velocity of the mass at time , and is the quarter period of oscillation. Then

for .

Introduce a link to Newtonian, Hamiltonian, Lagrangian, and Hamilton-Jacobi formulations of
physics by identifying geometry with physics via

by noting that the total energy of the mass remains constant while its potential

energy (also often denoted as ) and kinetic energy fluctuate. The total
energy is determined by the maximum speed of the mass at the origin , where the potential

is zero, as or as its potential energy at maximum displacement ,  when the
velocity and, therefore, kinetic energy is zero. The kinetic energy of the mass then is

, implying in our case with at time that during the half

period of motion between turning points the velocity as a function of position of
the mass is



This gives us our physical autonomous ODE for the flow vector, i.e., the velocity

which is a physical realization of our mathematical formalism
'

with the allied geometrics.

For other potential energy fields in which the total energy of the particle is conserved, i.e., the
energy is independent of time, and the potential energy depends only on position, we can apply
the same mathematical formalism if we break down the trajectory into segments where
bijectivity between the velocity and position holds, i.e., between turning points, where the
velocity is zero (inflection points are no problem). Below I show how these observations are
related to stationary principles.

A Legendre transform also applies to compositional inverse pairs and

for . A graphical representation of the area of the rectangle with
lower left corner at the origin and upper right corner at

,  i.e., a point on the curve

gives the sum of the area between the curve and the -axis and between
the curve and the -axis as



which satisfies

and

. This follows from the graphical representation.

Consequently, the Lengendre transform involutions

and

or

and

hold.

With the obvious meaning of notation, this may be re-expressed as

with .

The tangent line to the curve at the point has -intercept

and slope , so knowing only allows us to ensconce the unknown curve

in an envelope of tangent lines.

For example, for the inverse pair

for and

for ,  the associated integrals are

and



.

Then the tangent lines, parametrized by , to the curve are

for , and we have the envelope of four
tangent lines in the following Desmos plot;

with



is the black curve from ,

are the blue dotted tangent lines with , and

are the green dotted tangent lines with .

The curvature of is where , so we could

approximate around the origin with , which in the example is

, depicted in the following plot as the blue curve (the black is :



Of course, we could use the iterated infinigen to get better and better approximations (truncated

Taylor series) of .

If we add a quantity independent of and , say , to both sides of any of the Legendre
transform equalities, the equalities remain valid, for example,



in particular, this holds when

and

,

where and are the Hamiltonian and the Lagrangian and the potential is
independent of and . This satisfies the general reciprocal derivative relation for an inverse

pair as and .

_______________________

For a free particle moving in one dimension with constant momentum and, therefore, constant
total energy , the non-relativistic quantum probability amplitude is

where the phase is regulated by Planck’s constant . The particle has equal relative  probability
of being detected anywhere at any time. The phase can be identified as an action and Feynman
path integration as integration of the probability amplitude over different paths over which the
action can vary.  See . . . .

______________________________

Appendix 8: Characterizing the flow function without using the infingen

In this section, I delineate the basic properties of the flow function without resorting to an
iterated infinigen. This veils the connection to Lie theory and the infinigen series of equations
(B.21) and (B.26) of Gell-Mann and Low demonstrated in the following and other sections.

With the flow function defined as

evaluating at different values gives



and taking derivatives gives

The derivatives imply the tangency condition

with

Differentiation of the inversion relation gives

i.e., the reciprocal relation of the derivatives of the inverse pair

Substitution gives the autonomous O.D.E.



From the derivative w.r.t. evaluated at and the reciprocal properties of the derivatives,

Integration gives

Alternatively, from the tangency property,

When well-defined, the translation group property

holds.

Kuczma on pg. 20 in section “10. The equation of translation”  in “A survey of the theory of

functional equations” gives , where ia an arbitrary continuous
and strictly increasing function, as the general continuous solution of the functional equation

(See also eqn. (5) on pg. 24 of “The work of Niels Henrik Abel”
by Houzel.) In section “17. Iteration” Kuczma discusses identities of the form

in relation to compositional iteration and the Abel and Schröder

https://www.abelprisen.no/c53052/binfil/download.php?tid=53200


equations. On pg. 6, he gives  the solution (cf. formal group

laws) as the solution to the functional equation and

for for arbitrary functions

and .

For a presentation of the flow function as an extremal of a functional, see pgs. 260 through 263
of “Variational aspects of the Abel and Schröder functional equations” by McKiernan.

See also “The continuous iteration of real functions” by Ward and Fuller.

______________________________

Appendix 9: Characterizing the flow function via the iterated infinigen

Given the function and its local inverse ,  define the infinigen

Then given an analytic function at , for a suitable range of ,

with

This function inherits only a limited translation group property from that
of ; specifically,

and, in general,

The full tangency property

https://www.cambridge.org/core/services/aop-cambridge-core/content/view/8EE3CAE2FCB27C41173138A75A72D13B/S0008439500051778a.pdf/variational-aspects-of-the-abel-and-schroder-functional-equations.pdf
https://www.ams.org/journals/bull/1936-42-06/S0002-9904-1936-06311-1/S0002-9904-1936-06311-1.pdf


does follow from differentiation of the exponentiated infinigen as it does for .

For , analytic continuation gives over sections of bijectivity of the inverse pair

Then, for , repeated differentiation w.r.t. gives, at ,

and, in particular, for ,

and, for ,

giving the reciprocal property of the first derivatives of the local inverse pair, i.e., the inverse
function theorem.

Substitution in this last equation gives the autonomous O.D.E.

Integration gives



The tangency property follows from the first derivative as well;

Alternatively, the derivative w.r.t. gives the tangency property as

The translation equation follows from

In Gell-Mann and Low (as suggested by T. D. Lee), the infinigen series appears in the equations
(B.21) and (B.26) on pg. 3112, and in K & M, the equation (54) on pg. 14 for vector functions.



See the refs in OEIS A145271 and the associated A133437, A134264, A134685, A139002, and
A139605 for the appearance of various manifestations of the infinigen series in diverse areas of
mathematics and physics.

______________________________

Appendix 10: Characterizing the flow function via the translation functional
equation

Given sufficient continuity and the translation group property

then

and

Given sufficient analyticity, define

Then

giving the diff eq

The tangency condition may be derived from

https://oeis.org/A145271
https://oeis.org/A133437
https://oeis.org/A134264
https://oeis.org/A134685
https://oeis.org/A139002
https://oeis.org/A139605


by letting and using , giving

so

Combining equations,

These diff eqs are called the Azcel-Frege-Jabotinsky equations by some authors. See “Gottlob
Frege, A Pioneer in Iteration” by Granau, “Some differential equations related to iteration theory”
by Aczel and Granau, and “Eri Jabotinsky, mathematician and politician: a short biography” by
Gronau. Frege also considered the infinitesimal generator approach. From the man himself, see
“Analytic iteration” by Jabotinsky and “On analytic iteration” by Erdos and Jabotinsky.

______________________________

Appendix 11: A flow function and the Ovsyannikov diff eq

In “Introduction to the Theory of Quantized Fields” (3rd ed.), the authors, Boboliubov and
Shirkov, introduce the Ovsyannikov diff eq equation (eqn. (49.10) on pg. 505) for some
charge-related quantities

with

and

They give the solution as the flow function

https://www.researchgate.net/publication/239813246_Gottlob_Frege_A_Pioneer_in_Iteration_Theory/link/5548bf7a0cf2f72b5d426440/download
https://www.researchgate.net/publication/239813246_Gottlob_Frege_A_Pioneer_in_Iteration_Theory/link/5548bf7a0cf2f72b5d426440/download
https://www.cambridge.org/core/services/aop-cambridge-core/content/view/3DF0E8081A10D2519110A8FE9A9E0259/S0008414X00000304a.pdf/some-differential-equations-related-to-iteration-theory.pdf
https://link.springer.com/content/pdf/10.1007/s00010-021-00779-w.pdf
https://www.ams.org/journals/tran/1963-108-03/S0002-9947-1963-0155971-X/S0002-9947-1963-0155971-X.pdf


where

To make contact with the infingen approach, consider

where and are independent variables. With , and our exponentiated
ops, as in previous arguments, give

a functional equation satisfied by

since

and

B & S call their eqn. (49.14)

the Gell-Mann--Low equation.This is also the integral (A.2) discussed by Shirkov on pg. 171 of
Brown.

______________________________

Appendix 12: Frege on functional iteration



This appendix contains some notes on Frege’s habilitation on functional iteration as discussed
in “Gottlob Frege, A Pioneer in Iteration” by Granau. It’s a little confusing to distinguish when a
quantity is to be regarded as a constant or as a variable in Frege’s notation and the meaning of
the symbols varies in the paper, but here is a mapping from the notation of Frege as given by
Granau to a notation more amenable to comparison with that of this pdf;

and, with and treated as independent variables,

https://www.researchgate.net/publication/239813246_Gottlob_Frege_A_Pioneer_in_Iteration_Theory/link/5548bf7a0cf2f72b5d426440/download


and

Referring to the equation above

consistent with

and

Relating these equations to integer discrete iterations beginning with some initial value
, we have for , using the translation property,

,

,

with iterations.

Generalizing,

and



An example of an application of this methodology given by Frege and illustrated by Granau is
for

with, in my notation, neglecting stipulating the branch of arctan for bijectivity for a true local
inverse pair for given and ,

and

and

We have

and

so



the expression in Granau.

Note that if you have the formal group law for an inverse pair of functions and

with

then you can relate it to a shifted FGL not necessarily vanishing at the origin

to quickly express in terms of and . For ,

(For a short discussion of FGLs, see the webpage “Formal Groups and Where to Find Them” by
Walker.)

With

and ,

https://awwalker.com/2017/02/05/formal-groups-and-where-to-find-them/


with and

The solution for the result of the compositional iteration is written by Frege as the linear
fractional, of Moebius, transformation

Compare this with eqn, (1.21) on pg. 16 of “Part I. The simple Galton-Watson process:
Classical approach” by Gerold Alsmeyer and with eqn. (7.4) on pg. 9 of “The Theory of
Branching Processes” by Harris.

Granau-Frege’s equations for , and in terms of and
can be re-expressed in terms of the zeros of

with , , and . Then

https://www.uni-muenster.de/Stochastik/lehre/WS1011/SpezielleStochastischeProzesse/Ch_1.pdf
https://www.uni-muenster.de/Stochastik/lehre/WS1011/SpezielleStochastischeProzesse/Ch_1.pdf
https://www.uni-muenster.de/Stochastik/lehre/WS1011/SpezielleStochastischeProzesse/
https://www.rand.org/content/dam/rand/pubs/reports/2009/R381.pdf
https://www.rand.org/content/dam/rand/pubs/reports/2009/R381.pdf


Note that can be related to some formulas in A008292 involving the
hyperbolic FGL, a generalized tangent-arctangent FGL.

Let’s use Frege’s trivial first example as a second check on the formalism. In my notation,

with and ,

.

Then .

With and ,

.

Then and .

Conversely, and , so

https://oeis.org/A008292


In agreement with the briefer straightforward computation.

Letting

then

and we have the makings of a Green’s function and path integration over an action, which we

could morph with the imaginary number into phase factors, as shown in earlier
sections.

______________________________
______________________________

Related stuff: (with some redundancy)

On the physicists’ approach to the RG in quantum and statistical mechanics:

“Phase transitions and renormalization group: from theory to numbers” by Zinn-Justin (paper)

“Phase Transitions and Renormalization Group” by Zinn-Justin (book)

"Scaling, Self-similarity, and Intermediate Asymptotics" by Rosenblatt

“Lectures on Phase Transitions and the Renormalization Group” by Goldenfeld

“Renormalization Group theory and Variational calculations for propagating fronts” by Chen and
Goldenfeld

http://users.physik.fu-berlin.de/~pelster/Seminar6/zinn-justin2.pdf


“Numerical renormalization group calculations for similarity solutions and traveling waves” by
Chen and Goldenfeld

“The renormalization group and critical phenomena” by WIlson (Nobel lecture)

“Quantum Field Theory Vols, I, II, and III” by Zeidler (classical and Hopf algebra approach to the
renormalization}

“Why the renormalization group is a good thing” by Weinberg

“Mathematical developments in the rise of Yang-Mills gauge theories” by Koberinsk. See pg. 9
on Gell-Mann and Low, Pg..18 Sec.3.2 Development of the renormalization group, and pg. 27
4.2 The success of formal analogies with statistical mechanics.
.
“The renormalization group and the -expansion” by Wilson and Kogut (p. 179, differential
equation)

“The Critical Point” by Domb, in particular, section “1.2 Renormalization Group: Respectability{
(p. 29) and chapter “7 Renormalization Group” (p. 261)

“Theories of Matter: Infinities and Renormalization” by Kadanof, in particular, “Section 6.6 The
Wilson revolution}” (p.41).

“Wilson’s renormalization group: a paradigmatic shift” by Brézin

“Quantum Electrodynamics at Small Distances” by Gell-Mann and Low

“A Critical History of Renormalization” by Kerson Huang

“Renormalization and Effective Field Theory” by Costello, pg. 124 introduces the vector field
associated with a RG flow

On complex dynamics and functional iteration / composition:

“Iteration Theory and its Functional Equations” edited by Liedl, Reich, and Targonski

“Convolution Polynomials” by Knuth

“A History of Complex Dynamics: From Schröder to Fatou to Julia” by Alexander

“Farey Curves” by Buff, Henriksen, and Hubbard

https://www.nobelprize.org/uploads/2018/06/wilson-lecture-2.pdf
http://philsci-archive.pitt.edu/15477/1/MathDevYangMills.pdf
https://www.researchgate.net/publication/255306347_The_renormalization_group_and_the_epsilon_expansion
https://arxiv.org/pdf/1002.2985.pdf
https://arxiv.org/abs/1402.3437
https://authors.library.caltech.edu/60469/1/PhysRev.95.1300.pdf
https://arxiv.org/pdf/math/9207221.pdf
https://projecteuclid.org/download/pdf_1/euclid.em/1069855247


“Newton’s method and fractals” by Burton

“An introduction to Julia and Fatou sets” by Sutherland

“Newton’s Method as a Dynamical System” by Ruckert

“Topology for the basins of attraction of Newton’s method in two complex variables” by Roeder

“Mandelbrot set” Wikipedia

“Families of Rational Maps and Iterative Root-Finding Algorithms” by McMullen

Book review by Perez of “Early days in complex dynamics: a history of complex dynamics in one
variable during 1906–1942”, by Alexander, Iavernaro, and Rosa

“Translation equation and Sincov’s equation – A historical remark” by Granau

“A remark on Sincov’s functional equation” by Gronau

On the RG and CD:

“Evolution profiles and functional equations” by Curtright and Zachos

“Chaotic Maps, Hamiltonian Flows, and Holographic Methods” by Curtright and Zachos

“Logistic Map Potentials” by Curtright and Veitia

“Renormalization Group Functional Equations” by Curtwright and Zachos

“Scaling, Self-similarity, and Intermediate Asymptotics” by Barenblatt

“Lectures on Phase Transitions and the Renormalization Group “ by Goldenfeld, section 9.5 RG
in Differential Form on pg. 256

On variational principles and classical mechanics:

“The principle of least action” by Feynman

https://www.whitman.edu/documents/Academics/Mathematics/burton.pdf
http://www.math.stonybrook.edu/~scott/Papers/India/Fatou-Julia.pdf
http://www.math.stonybrook.edu/theses/thesis06-1/part1.pdf
https://math.iupui.edu/~roederr/roeder_cornell.pdf
https://en.wikipedia.org/wiki/Mandelbrot_set
https://dash.harvard.edu/bitstream/handle/1/9876064/McMullen_FamiliesRationalMap.pdf?sequence=1
http://www.math.iupui.edu/~rodperez/Papers/010-earlyDays.pdf
http://eqworld.ipmnet.ru/en/methods/fe/Gronau2000.pdf
https://arxiv.org/abs/0909.2424
https://arxiv.org/abs/1002.0104
https://arxiv.org/pdf/1005.5030.pdf
https://arxiv.org/abs/1010.5174
https://www.feynmanlectures.caltech.edu/II_19.html


“Conceptual Approaches to the Principles of Least Action” by Danielsson

“Hamilton’s principle: why is the integrated difference of kinetic and potential energy
Minimized?” by Rojo

“The Principle of Least Action in Dynamics” and Manton

“Fermat’s Principle and the Geometric Mechanics of Ray Optics” by Holm

“Principle of Least Action” by Manoj K. Harbola (slides)

Web pages on Fermat’s principle, on Abbreviated Action, on Maupertuis’ Action, on Hamilton’s
Principle, on the Hamilton-Jacobi Equation by Fowler

Hamilton-Jocobi Equation (Wikipedia)

“The Variational Principles of Mechanics” by Lanczos

“Variational Principles in Classical Mechanics” by Cline

“Mechanics and the Foundations of Modern Physics” by Helliwell and Sahakian

“Mathematical Methods of Classical Mechanics” by Arnold

“Geometric Numerical Integration” by Hairer, Lubich, and Wanner

On the Hopf algebraic approach to the RG:

“Hopf algebras in renormalization theory: Locality and Dyson-Schwinger equations from
Hochschild cohomology” by Bergbauer and Kreimer

“Renormalization in quantum field theory and the Riemann-Hilbert problem II: the β-function,
diffeomorphisms and the renormalization group” by Connes and Kreimer

“Hopf Algebras, Renormalization and Noncommutative Geometry” by Connes and Kreimer

“Renormalization & Renormalization Group” by Kreimer

“Renormalization Group as a Probe for Dynamical Systems” by Sarkar and Bhattacharjee

“QFT and its discontents: a blog” by Predrag Cvitanovic

https://jfuchs.hotell.kau.se/kurs/amek/prst/14_hpvp.pdf
http://de.arxiv.org/pdf/physics/0504016v1
http://de.arxiv.org/pdf/physics/0504016v1
https://www.damtp.cam.ac.uk/user/nsm10/PrincLeaAc.pdf
https://www.fields.utoronto.ca/programs/scientific/12-13/Marsden/FieldsSS2-FinalSlidesJuly2012.pdf
http://home.iitk.ac.in/~mkh/Talks/action_princ.pdf
https://galileoandeinstein.phys.virginia.edu/7010/CM_03_FermatLeastTime.html
https://phys.libretexts.org/Bookshelves/Classical_Mechanics/Graduate_Classical_Mechanics_(Fowler)/09%3A_Maupertuis_Principle_-_Minimum_Action_Path_at_Fixed_Energy/9.03%3A_The_Abbreviated_Action
https://galileoandeinstein.phys.virginia.edu/7010/CM_09_Maupertuis.html
https://galileoandeinstein.phys.virginia.edu/7010/CM_08_ActionEndPts.html
https://galileoandeinstein.phys.virginia.edu/7010/CM_08_ActionEndPts.html
https://galileoandeinstein.phys.virginia.edu/7010/CM_12_Hamilton_Jacobi.html
https://en.wikipedia.org/wiki/Hamilton%E2%80%93Jacobi_equation
https://arxiv.org/pdf/hep-th/0506190.pdf
https://arxiv.org/pdf/hep-th/0506190.pdf
https://arxiv.org/pdf/hep-th/0003188.pd
https://arxiv.org/pdf/hep-th/0003188.pd
https://arxiv.org/abs/hep-th/9808042
http://www2.mathematik.hu-berlin.de/~kreimer/wp-content/uploads/SkriptRGE.pdf
https://iopscience.iop.org/article/10.1088/1742-6596/319/1/012017/pdf
http://www.cns.gatech.edu/~predrag/papers/finiteQED.pdf


“On algebraic structures of numerical integration on vector spaces and manifolds” by
Lundervold and Munthe-Kaas

More on the underlying differential equations, algebra, and combinatorics:

“Compositional Inverse Pairs, the Inviscid Burgers-Hopf Equation, and the Stasheff
Associahedra” by Copeland

The OEIS entries above repeat some of the refs above and supply more as do the
MathOverflow questions referenced in the entries. My blog “Shadows of Simplicity” also
contains many relevant posts, some directly related to the above, others, tangentially.

Miscellaneous:

“Applications of Lie Groups to Differential Equations” by Olver

For an extended discussion of coupling constants in physics, see “Theories of Matter: Infinities
and Renormalization” by Kadanoff

“Lectures on the Theory of Group Properties of Differential Equations” by Ovsyannikov

“Analytical Form of Differential Equations” by Brjuno

‘From small divisors to Brjuno functions” by Marmi (see pg. 24)

“Branching processes 1. Galton-Watson processes” lecture notes by Steve Lalley, Univ. of
Chicago, on the Galton-Watson process (eqn. (5) on pg. 3 and eq.( 22) on pg. 12)

“Universal Scaling Behaviour for Iterated Maps in the Complex Plane” by
N. S. Manton and M. Nauenberg

“Lecture Notes on Dynamical Systems, Chaos, and Fractal Geometry” by Goodson

“Renormalization group as as a probe of dynamical systems” by Sarkar and Bhattacharjee

The RG flow tangency condition appears also in equations 2.4-2.6 and 2.21 of
“Renormalization-group method for reduction of evolution equations: invariant manifolds and
envelopes” by Ei, Fujii, and Kunihiro.

“Introduction to Partial Differential Equations” by Olver

https://arxiv.org/pdf/1112.4465.pdf
https://tcjpn.wordpress.com/2014/09/17/compositional-inverse-pairs-the-inviscid-burgers-hopf-equation-and-the-stasheff-associahedra/
https://tcjpn.wordpress.com/2014/09/17/compositional-inverse-pairs-the-inviscid-burgers-hopf-equation-and-the-stasheff-associahedra/
https://arxiv.org/abs/1002.2985
https://arxiv.org/abs/1002.2985
https://www.researchgate.net/publication/273204411_Analytical_form_of_differential_equations
https://www.kurims.kyoto-u.ac.jp/~kyodo/kokyuroku/contents/pdf/1493-1.pdf
http://galton.uchicago.edu/~lalley/Courses/312/Branching.pdf
https://galton.uchicago.edu/~lalley/Courses/312/
https://en.wikipedia.org/wiki/Galton%E2%80%93Watson_process
https://projecteuclid.org/journals/communications-in-mathematical-physics/volume-89/issue-4/Universal-scaling-behaviour-for-iterated-maps-in-the-complex-plane/cmp/1103922930.pdf
http://www.issp.ac.ru/ebooks/books/open/Chaos_Fractal_Geometry.pdf
https://www.researchgate.net/publication/305731026_Renormalization_group_as_a_probe_for_dynamical_systems
https://arxiv.org/abs/hep-th/9905088
https://arxiv.org/abs/hep-th/9905088


“The Calculus of Variations” by Olver

“Manifolds, Tensor Analysis, and Applications” by Marsden, Ratiu, and Abraham (3’rd edition),
in particular Chapter 4 Vector Fields and Dynamical Systems

“Introduction to Mechanics and Symmetry” by Marsden and Ratiu (2’nd edition)

“On Symplectic Reduction in Classical Mechanics” by Butterfield

“Renormalization: From Lorentz to Landau (and Beyond)” by Brown (editor)

“The conceptual foundations and the philosophical aspects of renormalization theory” by Cao
and Schweber

“The Triumph and Limitations of Quantum Field Theory” by Gross

“Burgers’s-Korteweg-De Vries Equation for Viscoelastic Rods and Plates” by Nariboli and Sedov

“On tree hook length formulae, Feynman rules and B-series” by Bradley Robert Jones

“Introduction to Smooth Manifolds” by John Lee

“Modern Geometry--Methods and Applications: Part I, The Geometry of Surfaces,
Transformations, and Fields” by Dubrovin, Fomenko, and Novikov (2’nd edition) : Maupertuis’
Principle p.345. Geodesic metric proportional to E -U on p.346. Fermat’s principle 347.
Lagrange surfaces, HJE p. 367.

For some early presentations of formal group laws, see
https://mathoverflow.net/questions/352842/nascent-formal-group-law

See pgs. 8 and 9 of  “From Abel’s heritage: Transcendental objects in algebraic geometry and
their algebrazation” by Catanese for an example of an Abel equation and reduction of integrals

“The Biggest Ideas in the Universe: 11. Renormalization ” video by Sean Carroll,  very good
(see some other vids in YouTube library)

“6 Lectures on QFT, RG, and SUSY” by Hollywood

“A hint of renormalization” very good, and more adv “An intro to nonperturbative renormalization
group” by Delamotte

https://www-users.cse.umn.edu/~olver/ln_/cv.pdf
https://core.ac.uk/download/pdf/82598554.pdf
https://mathoverflow.net/questions/352842/nascent-formal-group-law


“Regularization, renormalization, and dimensional analysis: Dimensional regularization meets
freshman E&M” and another “Regularization, renormalization, and dimensional analysis” by
Olness and Scalise

Neumaier, “Renormalization without infinities”

Li “Intro to Renormalization in Field Theory” power counting

Butterfield and Bonatta, “Renormalization for Philosophers” good

“Analysis of a renormalization group method and normal form theory for
perturbed ordinary differential equations” by DeVille, Harkin, Holzec Josic, Kaper

“Bogoliubov Renormalization Group and Symmetry of Solution in Mathematical Physics” by
Vladimir F. Kovalev and Dmitrij V. Shirkov has on  pg. 21 Burgers’ equation soln for initial
boundary value f(0,x). This is derived from the heat equation. Look also at other paper ? which
gives an example of CLT from iterative procedure and compare/merge perspectives.
https://arxiv.org/pdf/hep-th/0001210.pdf

“Functional self-similarity and renormalization group symmetry in mathematical physics” by
Vladimir F. Kovalev and Dmitrij V. Shirkov

https://www.physicsoverflow.org/37454/pedagogical-introduction-st%C3%BCckelberg-renormali
zation-group?show=37454#q37454

The Bogoliubov Renormalization Group (Second English printing) by
D.V. Shirkov,  pg. 8 contains the Gell-Mann Low Lee solution and good history

Conceptual Foundations of Quantum Field Theory by Cao

“Symmetries of Integro-Differential Equations” by Y.N. Grigoriev  N.H. Ibragimov  V.F. Kovalev
S.V. Meleshko,   saved under Kovalev Burgers equations

Quantum Field Theory II: Quantum Electrodynamics by Zeidler, on renormalization group

“What is the event in history where iterated functions became appropriate for modeling
physics?” Physics StackExchange question posted by Geisler

“Frege’s Habilitationsschrift: Magnitude, Number and the Problems of Computability” by Gastaldi

“Structural features in Ernst Schröder's’s work. Part I” by Bondoni

“Structural features in Ernst Schröder's’s work. Part II” by Bondoni,

https://www.physicsoverflow.org/37454/pedagogical-introduction-st%C3%BCckelberg-renormalization-group?show=37454#q37454
https://www.physicsoverflow.org/37454/pedagogical-introduction-st%C3%BCckelberg-renormalization-group?show=37454#q37454
https://physics.stackexchange.com/questions/106143/what-is-the-event-in-history-where-iterated-functions-became-appropriate-for-mod
https://physics.stackexchange.com/questions/106143/what-is-the-event-in-history-where-iterated-functions-became-appropriate-for-mod
https://hal.inria.fr/hal-01615312/file/432590_1_En_12_Chapter.pdf
https://www.semanticscholar.org/paper/Structural-features-in-Ernst-Schr%C3%B6der's-work.-Part-Bondoni/e3edbc075721e5e07b44ae3abc554f56c12c0a1c
https://apcz.umk.pl/LLP/article/download/LLP.2012.014/1284/5117


in which the  footnote on p. 282 begins:

Yet in 1884 Koenigs wrote in his investigations, Mr. Schröder met with a
functional equation, from which one may deduce Abel’s by taking the logarithm of the
two members. To solve the Abel Equation or Schröder’s is then the same problem
[Koe84, p. 4]. The relation between the Schröder Equation and Abel’s was
also stressed by Pincherle: . . .  .
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