Dualities Between the Appell Raising Op and the Generalized Creation Op

Tom Copeland, Los Angeles, Ca., Feb. 7, 2022

This set of notes is about dualities, in several reps and a special action, between the generalized creation op explored in my earlier post "The Creation Op" and the Appell creation/raising op, explored in a number of my posts.

Duality in a special action:

As discussed in several of my posts over many years, one way to define an Appell sequence of polynomials (using the umbral notation and maneuver $(b .)^{n}=b_{n}$) is through their moments a_{n} via

$$
A_{n}(z)=(a .+z)^{n}=\sum_{k=0}^{n}\binom{n}{k} a_{n-k} z^{n}
$$

with $a_{0}=1$. Another is through its e.g.f.
$A(t) e^{z t}=e^{a . t} e^{z t}=e^{(a .+z) t}=e^{A .(z) t}$
with $A(0)=1$.

A third is with the raising op whose action is
$R_{A} A_{n}(z)=A_{n+1}(z)$,
and, as derived in the section below on dualities in reps, is explicitly
$R_{A}=z+q\left(\partial_{z}\right)$
with
$q(t)=\partial_{t} \ln (A(t))$.

Then
$\left.R_{A}^{n} 1\right|_{z=0}=\left.\left(z+q\left(\partial_{z}\right)\right)^{n} 1\right|_{z=0}=\left.A_{n}(z)\right|_{z=0}=(a .+0)^{n}=a_{n}$.

On the other hand the specialization
$\mathfrak{D}_{A}=q(z)+\partial_{z}$
of the generalized creation op characterized in my earlier post gives

$$
\begin{aligned}
& \left.\mathfrak{D}_{A}^{n} e^{x z}\right|_{z=0}=\left.\left(q(z)+\partial_{z}\right)^{n} e^{x z}\right|_{z=0} \\
& =\left.\partial_{t=0}^{n} e^{t\left(q(z)+\partial_{z}\right)} e^{z x}\right|_{z=0}=\left.\partial_{t=0}^{n} \frac{A(z+t)}{A(z)} e^{x(z+t)}\right|_{z=0} \\
& =\partial_{t=0}^{n} A(t) e^{x t}=\partial_{t=0}^{n} e^{A \cdot(x) t}=A_{n}(x),
\end{aligned}
$$

but
$A_{n}(0)=a_{n}=\partial_{t=0}^{n} A(t)$,
so
$\left.\mathfrak{D}_{A}^{n} 1\right|_{z=0}=\left.\left(q(z)+\partial_{z}\right)^{n} 1\right|_{z=0}=a_{n}$.

Consequently, we have the action duality
$\left.\left(z+q\left(\partial_{z}\right)\right)^{n} 1\right|_{z=0}=\left.\left(q(z)+\partial_{z}\right)^{n} 1\right|_{z=0}=a_{n}$.

Check:

$\left.\left(z+q\left(\partial_{z}\right)\right)\left(z+q\left(\partial_{z}\right)\right) 1\right|_{z=0}=\left(z^{2}+q\left(\partial_{z}\right) z+z q\left(\partial_{z}\right)+\left.q^{2}\left(\partial_{z}\right) 1\right|_{z=0}=q_{1}+q_{0}^{2}\right.$
and
$\left.\left(q(z)+\partial_{z}\right)^{2} 1\right|_{z=0}=\left.\left(q(z)+\partial_{z}\right)\left(q(z)+\partial_{z}\right) 1\right|_{z=0}$
$=\left.\left(q^{2}(z)+q(z) \partial_{z}+\partial_{z} q(z)+\partial_{z}^{2}\right) 1\right|_{z=0}=q_{0}^{2}+q_{1}$.
Check:

If $A(t)=e^{\frac{e^{b t}-1}{b}}$, then $q(z)=e^{b z}$, and

$$
\begin{aligned}
& \left(z+e^{b \partial_{z}}\right)^{3} 1=\left(z+e^{b \partial_{z}}\right)^{2}(z+1)=\left(z+e^{b \partial_{z}}\right)\left(z^{2}+z+(z+b)+1\right) \\
& =\left(z+e^{b \partial_{z}}\right)\left(z^{2}+2 z+(b+1)\right)=\left(z^{3}+2 z^{2}+(b+1) z\right)+\left((z+b)^{2}+2(z+b)+(b+1)\right)
\end{aligned}
$$

evaluated at $z=0$ is $b^{2}+3 b+1$, and
$\left(e^{b z}+\partial_{z}\right)^{3} 1=\left(e^{b z}+\partial_{z}\right)^{2} e^{b z}=\left(e^{b z}+\partial_{z}\right)\left(e^{2 b z}+b e^{b z}\right)$
$=\left(e^{3 b z}+b e^{2 b z}+2 b e^{2 b z}+b^{2} e^{b z}\right)$ evaluated at $z=0$ is $1+3 b+b^{2}$.

Consistently,

$$
A(t)=e^{\frac{e^{b t}-1}{b}}=1+t+(b+1) \frac{t^{2}}{2}+\left(b^{2}+3 b+1\right) \frac{t^{3}}{3!}+\left(b^{3}+7 b^{2}+6 b+1\right) \frac{t^{4}}{4!}+\ldots
$$

(Some will immediately recognize the coefficient polynomials as a version of the Stirling polynomials of the second kind, a.k.a. the exponential/ Scherk / Bell / Touchard / Steffensen polynomials.)

Dualities in representations

Some equivalent reps for the raising op for an Appell sequence (reprising several earlier sets of notes)
$z+q\left(\partial_{z}\right)=A\left(\partial_{z}\right) z \frac{1}{A(\partial)}=z+\left[\ln \left(A\left(\partial_{z}\right)\right), z\right]=z+\partial_{\partial_{z}} \ln \left(A\left(\partial_{z}\right)\right)$,
using the commutator for two ops $[F, G]=F G-G F$.
This last expression in the string of equalities is perhaps more quickly digested, on first encounter, written as $z+\partial_{\partial_{z}} \ln \left(A\left(\partial_{z}\right)\right)=z+\left.\partial_{t} \ln (A(t))\right|_{t=\partial_{z}}$.

The counterpart string for the dual op is
$\partial_{z}+q(z)=\frac{1}{A(z)} \partial_{z} A(z)=\partial_{z}+\left[\partial_{z}, \ln (A(z))\right]=\partial_{z}+\partial_{z} \ln (A(z))$.

The second expression, a conjugation of the raising op z of the powers z^{n}, is perhaps the easiest way to understand the raising op for an Appell sequence. Using a generalized shift op,
$A\left(\partial_{z}\right) z^{n}=e^{a . \partial_{z}} z^{n}=(a .+z)^{n}=A_{n}(z)$,
so, conversely,
$\frac{1}{A\left(\partial_{z}\right)} A_{n}(z)=z^{n}$.

It follows that
$A\left(\partial_{z}\right) z \frac{1}{A\left(\partial_{z}\right)} A_{n}(z)=A\left(\partial_{z}\right) z^{n+1}=A_{n+1}(z)$,
a result that defines the action of the raising op R for any Sheffer sequence:
$R S_{n}(z)=S_{n+1}(z)$.

I've also made use of the Graves-Pincherle dual op derivatives
$[f(L), R]=\frac{\partial}{\partial L} f(L)=f^{\prime}(L)$
and
$[f(R), L]=\frac{\partial}{\partial R} f(R)=f^{\prime}(R)$
for any pair of ladder ops--a raising / creation op R and a lowering / annihilation / destruction op L, such as z and ∂_{z} for the power polynomials $P_{n}(z)=z^{n}$--satisfying $[L, R]=1$. (I've derived these results multiple ways in previous sets of notes on the Appell raising op and the Pincherle derivative.)

Summarizing, we have the representation dualities
$R_{A}=z+q\left(\partial_{z}\right)=A\left(\partial_{z}\right) z \frac{1}{A(\partial)}=z+\left[\ln \left(A\left(\partial_{z}\right)\right), z\right]=z+\partial_{\partial_{z}} \ln \left(A\left(\partial_{z}\right)\right)$,
and

$$
\mathfrak{D}_{A}=\partial_{z}+q(z)=\frac{1}{A(z)} \partial_{z} A(z)=\partial_{z}+\left[\partial_{z}, \ln (A(z))\right]=\partial_{z}+\partial_{z} \ln (A(z))
$$

between the Appell raising op and a specialization of the generalized creation op.

