Conjugate Appells for the Catalans

Tom Copeland, Los Angeles, Nov. 29, 2021

First set of conjugates with the parent function $B(t)=t-t^{2}$
Using the notation and identities of the my previous two blog posts on conjugation and umbral calculus, let the parent function and its compositional inverse be
$B(t)=t-t^{2}$,
and
$B^{(-1)}(t)=\frac{1-\sqrt{1-4 t}}{2}$.
Then the e.g.f.s for the moments of the associated Appell sequence and its conjugate are
$A(t)=\frac{t}{B(t)}=\frac{1}{1-t}=e^{a \cdot t}=1+t+2!\frac{t^{2}}{2!}+\cdots$
and
$\bar{A}(t)=\frac{B^{(-1)}(t)}{t}=\frac{1-\sqrt{1-4 t}}{2 t}=e^{\bar{a} \cdot t}$
$=1+t+2!C a t_{2} \frac{t^{2}}{2!}+2!$ Cat $_{3} \frac{t^{3}}{3!}+\cdots$.

The conjugate set of moments are the factorials $a_{n}=n$! and the quadruple factorials (cf. A001813) $\bar{a}_{n}=(2 n)!/ n!=n!C a t_{n}$, where $C a t_{n}$ are the Catalan numbers of $\underline{\text { A000108, }}$ $[C a t]=[1,1,2,5,14,42, \ldots]^{T}$. (These are also simply related to the perfect matchings of the vertices of the n -simplices / hypertriangles / hypertetrahedrons.)

The binomial Sheffer polynomial sequence associated with the parent function has the e.g.f.
$e^{B .(x) t}=e^{x B(t)}=e^{x\left(t-t^{2}\right)}$
with the coefficient matrix $[B]=$ padded $\underline{\text { A119275 (by padded I mean an extra initial row and }}$ column of all zeros except $B_{0,0}=1$ as is true for all canonical binomial Sheffer sequences).

The umbral inverse binomial Sheffer polynomial sequence has the e.g.f.
$e^{\hat{B} \cdot(x) t}=e^{x \hat{B}(t)}=e^{x B^{(-1)}(t)}=\exp \left(x\left(\frac{1-\sqrt{1-4 t}}{2 t}\right)\right)$
and the coefficient matrix $[\hat{B}]=\left[B^{(-1)}\right]=[B]^{-1}=$ padded $\underline{\text { A119274 }}$.
The associated Appell polynomial sequence has the e.g.f.
$e^{A .(x) t}=A(t) e^{x t}=\frac{1}{1-t} e^{x} t=e^{a . t} e^{x t}$,
and the coefficient matrix for the row polynomials $A_{n}(x)=(a .+x)^{n}$ is $[A]=\underline{\text { A094587 }}$.
The conjugate Appell polynomial sequence has the e.g.f.
$e^{\bar{A} \cdot(x) t}=\bar{A}(t) e^{x t}=\frac{1-\sqrt{1-4 t}}{2 t} e^{x} t=e^{\bar{a} \cdot t} e^{x t}$.

The coefficient matrix for the row polynomials $\bar{A}_{n}(x)=(\bar{a} .+x)^{n}$ is not in the OEIS.

The conjugate identities discussed in the two previous posts and in the MathOverflow question "Combinatorial proof of a matrix equation" lead to a formula for self-convolutions of the Catalan numbers.

The e.g.f. of the binomial convolution of two moment sequences is
$e^{a 1 . t} e^{a 2 . t}=e^{(a 1 .+a 2 .) t}=e^{b c . t}$
with the binomial convolution explicitly (and laboriously, for the sigma purists) given by

$$
(b c .)^{n}=b c_{n}=(a 1 .+a 2 .)^{n}=\sum_{k=0}^{n}\binom{n}{k} a 1_{k} a 2_{n-k},
$$

and the convolution of the two sequences $a 1_{n}=n!N a 1_{n}$ and $a 2_{n}=n!N a 2_{n}$ has the o.g.f.

$$
\frac{1}{1-N c . t}=\frac{1}{1-N a 1 . t} \frac{1}{1-N a 2 . t}
$$

with

$$
N c_{n}=\sum_{k=0}^{n} \quad N a 1_{k} N a 2_{n-k},
$$

corresponding to the multiplication of o.g.f.s.
Note the potential pitfall in interpreting self-multiplication of an e.g.f. as
$A^{2}(t)=A(t) A(t)=e^{a \cdot t} e^{a \cdot t}=e^{(a \cdot+a .) t}=e^{2 a \cdot t}$.

THIS IS FALSE. The umbral evaluation should come before multiplying the umbral rep of the e.g.f. by itself, not after; this is,
$A(t) A(t)=\left(e^{a \cdot D_{x=0}} e^{x t}\right) \cdot\left(e^{a \cdot D_{x=0}} e^{x t}\right)$
$\neq e^{a . D_{x=0}} e^{x t} e^{x t}=e^{a . D_{x=0}} e^{2 x t}=e^{2 a . t}$.

However, in this case, treating the same umbral character as two distinct umbral characters $a 1$. and $a 2$., reducing the equation to an identity between analytic series, next lowering the exponents $(a 1 .)^{m}=a 1_{m}$ and $(a 2 .)^{m}=a 2_{m}$, and then finally letting $a 1_{k}=a 2_{k}=a_{k}$ (this process) gives the correct result. Following this last procedure, self-convolution explicitly gives

$$
\begin{aligned}
& A^{2}(t)=A(t) A(t)=\left(e^{a . D_{x=0}} e^{x t}\right) \cdot\left(e^{a . D_{x=0}} e^{x t}\right)=e^{(a 1 .+a 2 .) t} \\
& =\sum_{n \geq 0}(a 1 .+a 2 .)^{n} \frac{t^{n}}{n!}=\sum_{n \geq 0}\left(\sum_{k=0}^{n}\binom{n}{k} a 1_{k} a 2_{n-k}\right) \frac{t^{n}}{n!} \\
& =\sum_{n \geq 0}\left(\sum_{k=0}^{n}\binom{n}{k} a_{k} a_{n-k}\right) \frac{t^{n}}{n!} \\
& =\sum_{n \geq 0}\left(\sum_{k=0}^{n} \frac{a_{k}}{k!} \frac{a_{n-k}}{(n-k)!}\right) t^{n} .
\end{aligned}
$$

Consequently, the e.g.f. of m self-convolutions of the Catalan numbers is given by

$$
M C(t)=e^{m c . t}=(\bar{A}(t))^{m+1}=\left(\frac{1-\sqrt{1-4 t}}{2 t}\right)^{m+1}
$$

where $m c$. is a single umbral character for the Taylor series coefficients of $M C(t)$ and $(m c .)^{k}=m c_{k} \neq m \cdot c_{k}$, but this is just the moment e.g.f. of the Appell sequence e.g.f.

$$
e^{M C .(x) t}=e^{(m c .+x) t}=M C(t) e^{x t}=\left(\frac{1-\sqrt{1-4 t}}{2 t}\right)^{m+1} e^{x t},
$$

which has the coefficient matrix $[M C]=[\bar{A}]^{m+1}$ with the first column $[m c]$ having the elements
$m c_{n}=M C_{n}(0)=\frac{C a t_{n}^{(m)}}{n!}$
with $C a t_{n}^{(m)}$ the n 'th element of the m 'th self-convolution of the Catalan numbers $C a t_{n}$.

Then the conjugation relation
$[\bar{A}]^{m+1}=[B]^{-1}[A]^{m+1}[B]$
leads to

$$
[m c]=[B]^{-1}\left[a^{(m+1)}\right]
$$

where $\left[a^{(m+1)}\right]$ has the e.g.f.
$e^{a .^{(m+1)} t}=\frac{1}{(1-x)^{m+1}}=(1-x)^{-(m+1)}$,
so
$a_{n}^{(m+1)}=\frac{(m+n)!}{m!}=(m+n) \cdots(m+1)$,
and
$C a t_{n}^{(m)}=\frac{m c_{n}}{n!}$.

Numerical checks for the first few rows of the matrix equation agree with expansions of the associated e.g.f.s and the corresponding OEIS entries, giving for the first self-convolution the shifted Catalan numbers with the initial one removed and, for the second, shifted $\underline{A 000245}$ with the first zero removed.

As an illustration and sanity check;
from the e.g.f. $e^{\hat{B} .(x) t}=e^{\left(\frac{1-\sqrt{1-4 t}}{2}\right) t}$
$\left[B^{(-1)}\right]=[B]^{-1}=[\hat{B}] \rightarrow$
$\left[\begin{array}{ccccc}1 & & & & \\ 0 & 1 & & & \\ 0 & 2 & 1 & & \\ 0 & 12 & 6 & 1 & \\ 0 & 120 & 60 & 12 & 1\end{array}\right]$,
$\left[a^{(3)}\right] \rightarrow$

$$
\left[\begin{array}{c}
1=1 \\
3=3 \\
12=6 \cdot 2! \\
60=10 \cdot 3! \\
360=15 \cdot 4!
\end{array}\right]
$$

and

$$
[B]^{-1}\left[\bar{a}^{(3)}\right]=\left[\bar{a}^{(3)}\right] \rightarrow
$$

$$
\left[\begin{array}{c}
1=1 \\
3=3 \\
18=9 \cdot 2! \\
168=28 \cdot 3! \\
2160=90 \cdot 4!
\end{array}\right]
$$

with $a_{n}^{(3)}=\frac{(n+2)!}{2!}$, the Taylor series coefficients for $(1-t)^{-3}$.
The associated e.g.f.s give
$\left(\frac{1-\sqrt{1-4 t}}{2 t}\right)^{3}=1+3 t+9 t^{2}+28 t^{3}+90 t^{4}+\cdots$
$=1+3 t+18 \frac{t^{2}}{2!}+168 \frac{t^{3}}{3!}+2160 \frac{t^{4}}{4!}+\cdots$
(cf. A 000245)
and

$$
\begin{aligned}
& (1-t)^{-3}=1+3 t+6 t^{2}+10 t^{3}+15 t^{4}+\cdots \\
& =1+3 t+12 \frac{t^{2}}{2!}+60 \frac{t^{3}}{3!}+360 \frac{t^{4}}{4!}+\cdots
\end{aligned}
$$

giving the third diagonal and column of the lower triangular Pascal matrix A007318.
This all agrees with the functional composition rep
$\bar{A}(t)=A(\hat{B}(t))=A\left(B^{(-1)}(t)\right)$
$=\frac{B^{(-1)}(t)}{t}=\left.\frac{t}{B(t)}\right|_{t=B^{(-1)}(t)}=\left.A(t)\right|_{t=B^{(-1)}(t)}$,
so
$M C(t)=(\bar{A}(t))^{m+1}=A^{m+1}(\hat{B}(t))=A^{m+1}\left(B^{(-1)}(t)\right)$
$=\left(\frac{B^{(-1)}(t)}{t}\right)^{m+1}=\left.\left(\frac{t}{B(t)}\right)^{m+1}\right|_{t=B^{(-1)}(t)}=\left.A^{m+1}(t)\right|_{t=B^{(-1)}(t)}$,
and this has the matrix conjugation rep
$[M C]=[B]^{-1}[A]^{m+1}[B]$.

Second set of conjugates with the parent function $B(t)=\frac{t}{1+t}$
I'm now going to introduce a new parent function and another conjugation relation involving also the permutation matrix $\underline{\text { A094587, }}$, so I need to relabel the matrices above.

Above the first parent function
$B(t)=t-t^{2}=B C^{(-1)}(t)$
with the inverse
$B^{(-1)}(t)=\frac{1-\sqrt{1-4 t}}{2}=B C(t)$,
related to the Catalan numbers $\underline{\text { A000108, }}$
is used to relate the Appell Permutation matrix
$[A]=[A P], \underline{\text { A094587 }}$,
associated with the Appell moment e.g.f.
$A(t)=\frac{t}{B(t)}=\frac{1}{1-t}=A P(t)$
to the Appell Catalan matrix
$[\bar{A}]=[A C]$
associated with the conjugate Appell moment e.g.f.
$\bar{A}(t)=\frac{B^{(-1)}(t)}{t}=\frac{1-\sqrt{1-4 t}}{2 t}=A C(t)$
as a conjugate pair via conjugation with the Binomial Catalan matrix
$\left[B^{(-1)}\right]=[B C]$, padded A119274;
that is, the conjugation relation
$[A P]=[B C]^{-1}[A C][B C]$
Is derived above.

Several years ago, I established also another conjugation relation using the second parent function

$$
B(t)=\frac{t}{1+t}=B L^{(-1)}(t)
$$

associated with the signed Lah polynomials, or normalized Laguerre polynomials of order -1 , with the inverse
$B^{(-1)}(t)=\frac{t}{1-t}=-B(-t)=B L(t)$.

With this new parent function, we have the new associations
$\bar{A}(t)=\frac{B^{(-1)}(t)}{t}=\frac{1}{1-t}=A P(t)$
and
$A(t)=\frac{t}{B(t)}=1+t=A T(t)$,
for which $A T$ is the 'acronym' for Appell $1+\boldsymbol{T}$ serving as a mnemonic for suggesting only the first two moments--the constant term and the coefficient for the linear term $t=T$--are nonzero for this Appell sequence. Then
$[A P]$,
and
$[A T]$, unsigned 1 132013 ,
are a conjugate pair with respect to the binomial Lah matrix
$[B L]$, unsigned $\underline{\text { A111596 }}$
with the e.g.f.
$e^{B^{(-1)}(t) x}=e^{-B(-t) x}=e^{\frac{t}{1-t} x}=e^{B L \cdot(x) t}=e^{B L(t) x}$.

Note that
$[B L]^{-1}$ is a signed version of $[B L]$
with e.g.f.
$e^{B(t) x}=e^{\frac{t}{1+t} x}=e^{-B^{(-1)}(-t) x}=e^{-B L(-t) x}=e^{-B L \cdot(-x) t}$,
so the row polynomials of
$\left.[B L]^{-1}=\widehat{B L}\right]$
are
$\widehat{B L}_{n}(x)=(-1)^{n} B L_{n}(-x)$.
Then the conjugation relation
$[\bar{A}]=[\hat{B}][A][B]=[B]^{-1}[A][B]$
becomes for the new parent function the new conjugation relation
$[A P]=[B L][A T][B L]^{-1}$.

Consequently,
$[B C]^{-1}[A C][B C]=[B L][A T][B L]^{-1}$
and
$[A C]=[B C][B L][A T][B L]^{-1}[B C]^{-1}$
or
$[A T]=[B L]^{-1}[B C]^{-1}[A C][B C][B L]$.

The product of coefficient matrices for any two Sheffer sequences, $[S 12]=[S 1][S 2]$, corresponds to the umbral composition $S 12_{n}(x)=S 1_{n}(S 2 .(x))$. For two binomial Sheffer sequences, we have
$B 12_{n}(x)=B 1_{n}(B 2 .(x))$
and
$e^{x B 12(t)}=e^{B 12 .(x) t}=e^{B 1 .(B 2 .(x)) t}=e^{B 2 .(x) B 1(t)}=e^{x B 2(B 1(t))}$,
so

$$
B 12(t)=B 2(B 1(t))
$$

Consequently, the binomial coefficient matrix

$$
[B C L]=[B C][B L]
$$

has the e.g.f.
$e^{B C L .(x) t}=e^{B C L(t) x}$
with
$B C L(t)=B L(B C(t))=\frac{B C(t)}{1-B C(t)}=\sum_{n \geq 1}(B C(t))^{n}$
$=\frac{\frac{1-\sqrt{1-4 t}}{2}}{1-\frac{1-\sqrt{1-4 t}}{2}}=\frac{1-\sqrt{1-4 t}}{1+\sqrt{1-4 t}}=t\left(\frac{1-\sqrt{1-4 t}}{2 t}\right)^{2}$
$=\frac{1-\sqrt{1-4 t}}{2 t}-1$
$=t+2 t^{2}+5 t^{3}+14 t^{4}+42 t^{5}+132 t^{6}+\cdots$,
which is the o.g.f. of the Catalan numbers minus one,
with inverse
$B C L^{(-1)}(t)=B C^{(-1)}\left(B L^{-1}(t)\right)$
$=B C^{(-1)}(-B L(-t))=(-B L(-t))-(-B L(-t))^{2}$
$=\frac{t}{1+t}-\frac{t^{2}}{(1+t)^{2}}=\frac{t}{(1+t)^{2}}$
with the associated matrix rep
$\left[B C L^{(-1)}\right]=[B C L]^{-1}=[B L]^{-1}[B C]^{-1}$.
Reducing
$[A T]=[B L]^{-1}[B C]^{-1}[A C][B C][B L]$
gives
$[a t]=[B L]^{-1}[B C]^{-1}[a c]=[B C L]^{-1}[a c]$.

Now for a sanity check with numerics:
From the e.g.f. $e^{\widehat{B C L} \cdot(x) t}=e^{\frac{t}{(1+t)^{2}} x}$,
$[B C L]^{-1}=[\widehat{B C L}] \rightarrow\left[\begin{array}{ccccc}1 & & & & \\ 0 & 1 & & & \\ 0 & -4 & 1 & & \\ 0 & 18 & -12 & 1 & \\ 0 & -96 & 120 & -24 & 1\end{array}\right]$,
$\left[\begin{array}{c}1=1 \\ 1=1 \\ 4=2 \cdot 2! \\ 30=5 \cdot 3! \\ 336=14 \cdot 4!\end{array}\right]$,
i.e., $\underline{\text { 0001761, }}$
and
$[a t] \rightarrow\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]$,
which agree numerically with calculations from the reduced matrix equation.
For another spot check, from the e.g.f. $e^{B C L .(x) t}=\exp \left(\left(\frac{1-\sqrt{1-4 t}}{2 t}-1\right) x\right)$,
$[B C L] \rightarrow\left[\begin{array}{ccccc}1 & & & & \\ 0 & 1 & & & \\ 0 & 4 & 1 & & \\ 0 & 30 & 12 & 1 & \\ 0 & 336 & 168 & 24 & 1\end{array}\right]$,
which agrees numerically as the inverse of the submatrix for $[B C L]^{-1}$ above and is consistent with
$[a c]=[B C L][a t]$.

For easy reference:
from the e.g.f. $e^{B C .(x) t}=e^{\left(\frac{1-\sqrt{1-4 t}}{2}\right) x}$ for padded $\mathbf{A 1 1 9 2 7 4}$,
$[B C]=\rightarrow$
$\left[\begin{array}{ccccc}1 & & & & \\ 0 & 1 & & & \\ 0 & 2 & 1 & & \\ 0 & 12 & 6 & 1 & \\ 0 & 120 & 60 & 12 & 1\end{array}\right]$,
from the e.g.f. $e^{\widehat{B C} .(x) t=e^{\left(t-t^{2}\right) x}}$ for padded $\underline{\text { A119275, }}$

$$
[B C]^{-1}=[\widehat{B C}] \rightarrow
$$

$$
\left[\begin{array}{ccccc}
1 & & & & \\
0 & 1 & & & \\
0 & -2 & 1 & & \\
0 & 0 & -6 & 1 & \\
0 & 0 & 12 & -12 & 1
\end{array}\right]
$$

from the e.g.f. $e^{B L .(x) t}=e^{\left(\frac{t}{1-t}\right) x}$ for unsigned $\underline{\text { A111596 }}$,
$[B L] \rightarrow$
$\left[\begin{array}{ccccc}1 & & & & \\ 0 & 1 & & & \\ 0 & 2 & 1 & & \\ 0 & 6 & 6 & 1 & \\ 0 & 24 & 36 & 12 & 1\end{array}\right]$,
from the e.g.f. $e^{\widehat{B L} .(x) t}=e^{\left(\frac{t}{1+t}\right) x}$ for $\underline{\text { A111596, }}$

$$
[B L]^{-1}=[\widehat{B L}] \rightarrow
$$

$$
\left[\begin{array}{cccccc}
1 & & & & \\
0 & 1 & & & \\
0 & -2 & 1 & & \\
0 & 6 & -6 & 1 & \\
0 & -24 & 36 & -12 & 1
\end{array}\right],
$$

from the e.g.f. $e^{A C .(x) t}=\frac{1-\sqrt{1-4 t}}{2 t} e^{x t}$,
$[A C] \rightarrow$
$\left[\begin{array}{ccccc}1 & & & & \\ 1 & 1 & & & \\ 4 & =2 \cdot 2! & 2 & 1 & \\ 30 & =5 \cdot 3! & 12 & 3 & 1 \\ 336 & =14 \cdot 4! & 120 & 24 & 4\end{array}\right]$,
with the first column of normalized Catalan numbers,
from the e.g.f. $e^{A T .(x) t}=(1+t) e^{x t}$ for unsigned A132013,
$[A T] \rightarrow$
$\left[\begin{array}{lllll}1 & & & & \\ 1 & 1 & & & \\ 0 & 2 & 1 & & \\ 0 & 0 & 3 & 1 & \\ 0 & 0 & 0 & 4 & 1\end{array}\right]$,
and, from the e.g.f. $e^{A P .(x) t}=\frac{1}{1-t} e^{x t}$ for $\underline{\text { 0094587, the permutation matrix, }}$
$[A P] \rightarrow$
$\left[\begin{array}{ccccc}1 & & & & \\ 1 & 1 & & & \\ 2 & 2 & 1 & & \\ 6 & 6 & 3 & 1 & \\ 24 & 24 & 12 & 4 & 1\end{array}\right]$.

Note that $[A T]$ with the first subdiagonal negated is the inverse matrix of the Appell permutation matrix $[A P]$.

